Skip to contents

Introduction

There may be situations where we want to estimate the lower asymptote of h0h_0 freely in our model rather than assuming it always starts at zero, which is what sicegar assumes by default. For this purpose, the functions fitAndCategorize() and figureModelCurves() contain the argument use_h0 (which has a default value set to FALSE). Setting the argument to TRUE results in the same process as usual, using functions ending in _h0 instead of their default counterparts. For example, the functions multipleFitFunction(), doublesigmoidalFitFormula(), parameterCalculation(), and normalizeData() have _h0 counterparts, multipleFitFunction_h0(), doublesigmoidalFitFormula_h0(), parameterCalculation_h0(), and normalizeData_h0().

We will demonstrate the differences between letting h0h_0 be estimated freely and assuming it is fixed at zero, first generating data where h0h_0 is not zero:

noise_parameter <- 1
reps <- 5
time <- rep(seq(3, 24, 3), reps)
mean_values <- doublesigmoidalFitFormula_h0(time,
                                       finalAsymptoteIntensityRatio = .3,
                                       maximum = 10,
                                       slope1Param = 1,
                                       midPoint1Param = 7,
                                       slope2Param = 1,
                                       midPointDistanceParam = 8,
                                       h0 = 3)
intensity <- rnorm(n = length(mean_values), mean = mean_values, sd = rep(noise_parameter, length(mean_values)))

dataInput <- data.frame(time, intensity)
ggplot(dataInput, aes(time, intensity)) + 
  geom_point() + 
  scale_y_continuous(limits = c(-1, 13), expand = expansion(mult = c(0, 0))) + 
  theme_bw()

Fitting the models to the data

fitAndCategorize() can be applied to the data, first with default arguments and second by setting the argument use_h0 to TRUE:

fitObj_zero <- fitAndCategorize(dataInput,
                           threshold_minimum_for_intensity_maximum = 0.3,
                           threshold_intensity_range = 0.1,
                           threshold_t0_max_int = 1E10,
                           use_h0 = FALSE)   # Default

fitObj_free <- fitAndCategorize(dataInput,
                           threshold_minimum_for_intensity_maximum = 0.3,
                           threshold_intensity_range = 0.1,
                           threshold_t0_max_int = 1E10,
                           use_h0 = TRUE)

Using figureModelCurves(), we can visualize the differences between using the default arguments and letting h0h_0 be freely estimated.

# Double-sigmoidal fit with parameter related lines
fig_a <- figureModelCurves(dataInput = fitObj_zero$normalizedInput,
                                  doubleSigmoidalFitVector = fitObj_zero$doubleSigmoidalModel,
                                  showParameterRelatedLines = TRUE,
                                  use_h0 = FALSE)   # Default

fig_b <- figureModelCurves(dataInput = fitObj_free$normalizedInput,
                                  doubleSigmoidalFitVector = fitObj_free$doubleSigmoidalModel,
                                  showParameterRelatedLines = TRUE,
                                  use_h0 = TRUE)

plot_grid(fig_a, fig_b, ncol = 2) # function from the cowplot package

It is clear that in this situation, using the default arguments result in a worse fit than when h0h_0 is allowed to be estimated freely.

Model fitting components (h0 free)

To fit and plot individual models using a freely estimated h0h_0, we must directly call the _h0 counterparts of each sicegar function. We have already generated the data (with h0=2h_0 = 2), so now we can normalize the data.

normalizedInput_free <- normalizeData(dataInput = dataInput, 
                                 dataInputName = "doubleSigmoidalSample")
head(normalizedInput_free$timeIntensityData) # the normalized time and intensity data
##    time intensity
## 1 0.125 0.2872373
## 2 0.250 0.3817810
## 3 0.375 0.7933784
## 4 0.500 0.8646748
## 5 0.625 0.5098882
## 6 0.750 0.0832724

We can now call multipleFitFunction_h0() on our data to be fitted, calculating additional parameters using parameterCalculation_h0():

# Fit the double-sigmoidal model
doubleSigmoidalModel_free <- multipleFitFunction_h0(dataInput=normalizedInput_free,
                                            model="doublesigmoidal")

doubleSigmoidalModel_free <- parameterCalculation_h0(doubleSigmoidalModel_free)

Now that we have obtained a fit, we can use figureModelCurves() to plot:

# double-sigmoidal fit
figureModelCurves(dataInput = normalizedInput_free,
                  doubleSigmoidalFitVector = doubleSigmoidalModel_free,
                  showParameterRelatedLines = TRUE,
                  use_h0 = TRUE)

Model parameters

Recall that the original model parameters (which generated the data) are given as finalAsymptoteIntensityRatio = 0.3, maximum = 10, slope1Param = 1, midPoint1Param = 7, slope2Param = 1, midPointDistanceParam = 8, h0 = 2.

We can recover the parameter estimates from both of the doubleSigmoidalModel objects created above. fitObj_zero does not return a value for h0h_0 (because it is not part of the estimation process). When h0h_0 is allowed to vary freely, the full set of parameters are estimated to be much closer to the data generating parameters (as opposed to when h0=0h_0 = 0 is forced).

fitObj_zero$doubleSigmoidalModel |>
  dplyr::select(finalAsymptoteIntensityRatio_Estimate, maximum_Estimate, slope1Param_Estimate, midPoint1Param_Estimate,
         slope2Param_Estimate, midPointDistanceParam_Estimate) |> 
  c()
## $finalAsymptoteIntensityRatio_Estimate
## [1] 0.264187
## 
## $maximum_Estimate
## [1] 10.53659
## 
## $slope1Param_Estimate
## [1] 0.3070419
## 
## $midPoint1Param_Estimate
## [1] 11.42865
## 
## $slope2Param_Estimate
## [1] 0.5973118
## 
## $midPointDistanceParam_Estimate
## [1] 0.96
fitObj_free$doubleSigmoidalModel |>
  dplyr::select(finalAsymptoteIntensityRatio_Estimate, maximum_Estimate, slope1Param_Estimate, midPoint1Param_Estimate,
         slope2Param_Estimate, midPointDistanceParam_Estimate, h0_Estimate) |> c()
## $finalAsymptoteIntensityRatio_Estimate
## [1] 0.2820507
## 
## $maximum_Estimate
## [1] 10.22569
## 
## $slope1Param_Estimate
## [1] 1.167017
## 
## $midPoint1Param_Estimate
## [1] 7.296248
## 
## $slope2Param_Estimate
## [1] 0.8412287
## 
## $midPointDistanceParam_Estimate
## [1] 7.271145
## 
## $h0_Estimate
## [1] 3.79674