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Chapter 1

Periodic Signals in
Rotating-Asteroid Data

1.1 Near Earth Object Observations

The number of Near Earth Object (NEO) observations has grown exponen-
tially over the past two decades. NEO research gained momentum in 1998,
when asteroid 1997 XF11 was observed and projected to hit earth in 2028.
Fortunately, further observations of the target contradicted the suspicions,
but the event prompted a congressional request given to NASA. The request
tasked NASA with cataloging 90% of NEOs larger than 1km by 2008. Since
then, NASA and worldwide observers have continuously grown the NEO cat-
alogs [NASA, 2018].

Figure 1.1: Near-Earth Asteroid Discoveries over time. From: Alan Chamberlin
(JPL/Caltech), https://cneos.jpl.nasa.gov/stats/totals.html
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As of October 21st 2022, a total of 30,353 NEOs have been discovered
and cataloged by the NASA NEO program [NASA, 2022c]. Pomona College
has been a contributor to these observation efforts, collaborating with NASA
JPL, observing using Pomona’s 1-meter telescope located on Table Mountain.
I have been a member of the observing and research team on this project
since my sophomore year under the supervision of Professor Philip Choi in
the Pomona College Physics and Astronomy Department. The observing
projects were a primary motivation for pursuing my thesis topic.

Figure 1.2: Pomona College’s 1-Meter Telescope on Table Moun-
tain, CA. From: https://www.pomona.edu/academics/departments/physics-and-
astronomy/facilities/table-mountain-observatory

Just as what prompted the beginning of NEO observations in 1998, one
fundamental mission for observing NEOs is for the protection of earth —
by cataloging and taking repeated observations of an object, we are able
to accurately predict the orbit for the object over a long period of time.
Excitingly, this mission was in many ways re-confirmed and validated by
NASAs DART project on September 26th 2022, demonstrating the possibility
of human’s altering the orbit of a celestial body, in this case by impacting it
with a spacecraft [NASA, 2022b].

As techniques for studying NEOs continue to improve, we are able to un-
derstand more about the different movement of these asteroids. One specific
movement we care about is the rotation of the asteroids, which will be the
primary focus of this thesis.
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1.2 Rotating Asteroids

Rotating asteroids are of particular interest in NEO observations currently
because their rotation can lead to changes in their orbits. Therefore, if we are
to maintain commitment towards knowing the long-term orbit of an object,
understanding its rotation effect is critical.

1.2.1 Yarkovsky Effect

One dynamic that complicates our understanding of the long-term orbit of
rotating NEOs — particularly small, Rotating Near-Earth Asteroids (NEAs)
— is the Yarkovsky effect. The effect describes how the sun’s radiation on a
rotating object can change its orbit over time.

To demonstrate the Yarkovsky Effect, consider the illustration in Figure
(1.3). Notice in particular the day-time side of an object (pointing towards
the sun) and a night-time side of an object (pointing away from the sun).
On the day-time side, the object is absorbing radiation, while on the night-
time side, the object is emitting radiation. However, for a rotating body,
there is a discrepancy between the direction of radiation as the direction of
greatest emission is not opposite to that of greatest absorption. As a re-
sult, there is a net force on the object that pushes it off of its original orbit.
[Vokrouhlický et al., 2015].

Figure 1.3: Illustration of the Yakovsky Effect: From
https://skyandtelescope.org/astronomy-news/apophis-pays-a-visit-this-week/
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Because the Yarkovsky effect is primarily due to rotation and radiation
absorption/emission, the three primary characteristics of an asteroid that
will alter the Yarkovsky effect are its shape, rotation and thermal conduc-
tivity. The characteristic we are able to study at Pomona, and from most
ground-based observations, is the rotation of the NEAs, and therefore the
rotation characteristic will be the primary interest of this thesis.

1.2.2 Asteroid Light Curves

The primary method for determining the rotation of the NEAs is by ex-
tracting rotation characteristics from the light curves of the object. A light
curve can be generated in many ways, but the method that is used for the
Pomona College ground-based telescope is aperture photometry on images.
Without including too much detail, this method takes the photon counts for
some specified section of the sky (your aperture). There is also background
subtraction done with an outer dannulus in order to increase the signal to
noise ratio. An image example is shown in Figure 1.4.

Figure 1.4: Example data image, with example aperture in green. The area
between blue lines is the described region that is used for background subtraction.
Picture taken by Pomona College’s Table Mountain 1-meter telescope.

Because the majority of asteroids are non-circular, the amount of reflected
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light (and therefore photon counts in the aperture) will change based on
the surface area visible to earth at any given time. Comparing the two
orientations of a cigar-shaped asteroid in Figure 1.5 illustrates this effect,
showing orientation 1 having more reflected light and orientation 2 having
less reflected light.

Figure 1.5: Demonstration of potential orientations of cigar-like asteroid

From Figure 1.5, orientation 1, with its increased surface area, will reflect
more visible light that orientation 2. Therefore, as the asteroid rotates, the
shape exposed to earth will gradually alternate between orientation 1 and
orientation 2. Using images of asteroids, we can measure the variation in
brightness that is caused by this gradual change of orientation of the asteroid
(variation in reflected visual light). The period of these variations will be the
same as the rotation period of the asteroid.

1.3 Rotation Period Computation Technique

Once the light curves of an NEA is constructed, extracting the rotation peri-
ods of the asteroid is important to understanding the nature of it’s movement
— this is our primary goal.

Because we are handling a consistent rotating body, techniques for study-
ing periodic signals are naturally the first instinct. In particular, the Fourier
Transform is a common technique use for extracting periodic signal within
data. For evenly sampled, discrete data the Discrete Fourier Transform would
be a natural first analysis technique, and is often used for discrete, periodic
data.

However, most data, particularly in astronomy, is not evenly sampled.
Therefore, new techniques have been developed to overcome the problem of
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Figure 1.6: Example asteroid light curve and which parts of the curve would
correspond to the possible orientations in Figure 1.5. Adapted from: Tycho user
manual

uneven sampling. The Lomb-Scargle periodogram is one of these approaches
that is often used in Astronomy. In particular, it is cited in the work of
[Beniyama et al., 2022], which is a recent paper cataloging rotation period of
fast-rotating asteroids. We hope that replicating these results is a step that
can be done using our telescope, and therefore understanding their rotation
period detection technique is important.
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Chapter 2

Fourier Analysis

Fourier Analysis of periodic data is one of the most common techniques for
extracting periodic signal within data. The Fourier Transform has its origins
in physics and the dissipation of heat and rests on the assumption of that
every signal can be estimated with a linear combination of sine and cosine
functions — the Fourier Series.

2.1 The Fourier Series

2.1.1 The Origin of the Series

Jean-Baptiste Joseph Fourier was a French mathematician whose primary
research focus was the dissipation of heat. His most famous works, ”Mémoire
sur la propagation de la chaleur dans les corps solides” [Fourier, 1808] and
”Théorie analytique de la chaleur” [Fourier and Darboux, 1822], both tackled
the question of heat transfer. In particular, Fourier was working towards a
solution to the Heat Equation — the second order partial differential equation
in Equation (2.1).

∂u

∂t
= α2d

2u

dx2
(2.1)

Prior to Fourier, there had been no solution to Equation (2.1). In ”Mémoire
sur la propagation de la chaleur dans les corps solides” [Fourier, 1808], Fourier
explored the idea of a series in which all periodic functions could be expressed
as a liner combination of sine and cosine functions. This series allowed for
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a decomposition of a complex function, which then had a simpler PDE cal-
culation and contributed to solving the Heat Equation in Equation (2.1)
[Debnath, 2012]

This linear combination became known as the Fourier Series, and is the
foundation for many modern time-series analysis techniques — particularly
the Fourier Transform. The Fourier series is one of the building blocks for
the explanation of Fourier Analysis and the Lomb-Scargle periodogram.

2.1.2 Statement of the Fourier Series

The Fourier series suggests that every periodic function can be constructed
by a linear combination of sine and cosine functions. Using this assumption,
we can take some arbitrary function f(t) and express it as the sum:

f(t) = a0 + a1cos(1ω0t) + b1sin(1ω0t) + a2cos(2ω0t) + b2sin(2ω0t)...

= a0 +
∞∑
n=1

(ancos(nω0t) + bnsin(nω0t))
(2.2)

where a0 is the mean value of the function, each an and bn are the ampli-
tudes of the underlying cosine and sine functions respectively, and ω0 is the
fundamental frequency. This fundamental frequency is defined as ω0 = 2π

T

where T is the duration of the observation window. For example, for some
signal along the closed interval of time [0,2π], the fundamental frequency is
ω0 = 2π

2π−0
= 1, which can also be thought of as representing a curve that

goes through one period in our observation window T [Cheever, 2022].

2.1.3 Demonstration of the Fourier Series

A helpful way to grasp the concept of the Fourier series is with the concept of
a musical chord. We will consider some chord played on the piano consisting
of four notes. We then take a measurement of the sound produced by the
piano and create a graph. The graph may look something like Figure 2.1.

At first glance, to someone who did not know that the signal was produced
by a piano, the signal may be difficult to extract information from — much
like how data we are interested in studying may be. However, we know that
the signal was produced by four different notes — each of which has their
own frequency.
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Figure 2.1: Example Chord Function

If we consider each of the notes individually, assuming the signal is sinu-
soidal and each note is played at the same volume, then we can interpret our
chord as the sum of the individual notes.

Figure 2.2: Example Chord Function With Associated Notes. Note that the
example chord does not actually produce these sign waves in reality — the exact
chord is being used here as an analogy.

More precisely, we let one note have frequency ω, another have frequency
3ω, another have frequency 4ω, and the last note have frequency 6ω (Note
that with the overall periodic signal being 2π, our fundamental frequency is
ω = 1). Therefore, the chord, and the original signal, can be written as a
linear combination of the four sine functions for the notes. In other words,
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the image in Figure 2.2 is given by Equation (2.3).

f(t) = 0 + 1sin(1ω0t) + 1sin(3ω0t) + 1sin(4ω0t) + 1sin(6ω0t)

= sin(t) + sin(3t) + sin(4t) + sin(6t)
(2.3)

2.1.4 Fourier Series Coefficients

In order to transition from an infinite sum, like that of Equation (2.2), we
must consider the coefficients an and bn as n → ∞.

f(t) = a0+a1cos(1ω0t) + b1sin(1ω0t) + a2cos(2ω0t) + b2sin(2ω0t)

+a3cos(3ω0t) + b3sin(3ω0t) + a4cos(4ω0t) + b4sin(4ω0)

+a5cos(5ω0t) + b5sin(5ω0t) + a6cos(6ω0t) + b6sin(6ω0)...

(2.4)

Specifically, we consider if an and bn are zero or non-zero. Taking some of
these coefficients to be 0 and others positive, we can cancel out certain sine
and cosine functions.

f(t) = a0+�������:0
a1cos(1ω0t) + b1sin(1ω0t) +�������:0

a2cos(2ω0t) +�������:0
b2sin(2ω0t)

+�������:0
a3cos(3ω0t) + b3sin(3ω0t) +�������:0

a4cos(4ω0t) + b4sin(4ω0)

+�������:0
a5cos(5ω0t) +�������:0

b5sin(5ω0t) +�������:0
a6cos(6ω0t) + b6sin(6ω0)...

(2.5)

For a0 = 1, b1 = b3 = b4 = b6 = 1 and ω0 = 1, we notice that the original
example function in Equation (2.3) is extracted.

f(t) = 0 + sin(t) + sin(3t) + sin(4t) + sin(6t) (2.6)
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The calculation of the an and bn coefficients within the function f(t) is
critical to understand the underlying frequencies and how they influence the
signal. This can be done using the real trigonometric form of the Fourier
Series in Equation (2.2), resulting in

an =
2

T

∫
T

f(t)cos(nω0t)dt (2.7)

bn =
2

T

∫
T

f(t)sin(nω0t)dt (2.8)

However, considering the exponential form of the Fourier Series will be helpful
in consolidating these coefficients into one term and to generalize to imagi-
nary functions.

Consider the exponential form of the Fourier Series:

f(t) =
∞∑

n=−∞

cne
inω0t (2.9)

where

cn =
an
2

− i
bn
2

(2.10)

A proof that the exponential form in Equation (2.9) and the trigonometric
form in Equation (2.2) are equivalent is needed. The following proof contains
the general structure of a similar proof in [Herman, 2014].

Proof. We can begin with either equation and show equivalency to the other.
For this proof, begin with Equation (2.2).

So assume

f(t) = a0 +
∞∑
n=1

(ancos(nω0t) + bnsin(nω0t))

Using Euler’s Formulas
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cos(x) =
eix + e−ix

2

sin(x) =
eix − e−ix

2i

We can re-write f(t) as:

f(t) = a0 +
∞∑
n=1

an(
einω0t + e−inω0t

2
) + bn(

einω0t − e−inω0t

2i
)

Which can be simplified by grouping like exponential terms

f(t) = a0 +
∞∑
n=1

(
an − ibn

2
)einω0t + (

an + ibn
2

)e−inω0t

It should also be noted that the second term can be re-written for −n terms

f(t) = a0 +
∞∑
n=1

(
an − ibn

2
)einω0t +

−1∑
n=−∞

(
a−n + ib−n

2
)einω0t

which can further be simplified as

f(t) = a0 +
∞∑

n=−∞

cne
inω0t

where

cn =
an − ibn

2
, n = 1, 2, 3, ...

cn =
an + ibn

2
, n = −1,−2,−3, ...
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Since we are focused on finding information about the coefficients, and cn is
a combination of these coefficients, it serves well to solve for cn.

By plugging in Equations (2.7), (2.8) into the cn formula in Equation
(2.10) cn can be solved for. Although it will not be elaborated on in this proof,
[Herman, 2014] describes how this is the form for cn for both n = 1, 2, 3, ...
and n = −1,−2,−3, ...

cn =
1

T

∫
T

f(t)e−inω0tdt (2.11)

Where T is the fundamental period and ω0 is the fundamental frequency.

2.2 Fourier Transform

2.2.1 Statement of the Fourier Transform

The Fourier Transform is defined as a scalar multiple of cn. Specifically
cn × T . We let F (ω) = cn × T , and express the Fourier Transform equation
in (2.11) as:

F (ω) =

∫ ∞

−∞
f(t)e−iωtdt (2.12)

where ω = nω0.
We define another function — a periodogram — as:

P(ω) =
1

T
|F (ω)|2 (2.13)

The periodogram allows for us to do away with complex components, and
have a positive, real-valued function that peaks at the underlying ω values
that appear in the Fourier Transform.

Fourier Transform Example

To work through the process of solving the Fourier Transform, consider the
box function in Equation (2.14).
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f(t) =

{
1 −T ≤ t ≤ T
0 |t| > T

(2.14)

Performing the Fourier Transform on Equation (2.14), we get

F (ω) =

∫ T

−T

e−iωtdt

=
−1

jω
(e−iωT − e−iω−T )

=
2sin(ωT )

ω

(2.15)

Figure 2.3: f(t) and corresponding Fourier Trasnform F (ω). From
[Stanford, 2001]

It will be useful in the coming sections to find some common Fourier pairs
(functions and the resulting Fourier Transforms). Figure 2.4 shows Fourier
Pairs for Sinusoid, Top Hat, and Dirac Comb functions.

2.2.2 Windowing Functions and the Discrete Fourier
Transform

Real data is almost never taken continuously, so it is important to find some
discrete Fourier Transform that can be performed on discrete data. Win-
dowing functions serve as a way to visualize how this discrete data relates
to the underlying signal, and convolution gives an intuition for the Fourier
Transform of the Discrete Fourier Transform.
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Figure 2.4: Important Fourier Pairs. Modified from: [VanderPlas, 2018]

Windowing Functions

When looking at Figure 2.4, notice that a point-wise product of the three
functions would simulate discrete data. Specifically, the top-hat (or box)
function would restrict the observation to some discrete time interval, and
then the Dirac Comb function will create instantaneous observation times
within that time interval.

Functions that are point-wise multiplied from the original signal are called
windowing functions, as they create gaps of time in which the signal is ob-
served discretely.

Introducing the Discrete Fourier Transform

A discrete function of interest can be interpreted as a point-wise product of
our signal, a box function, and a dirac comb function. A dirac comb function
is shown at the bottom left of Figure 2.4 — a sequence of impulses separated
by some T. This Dirac Comb function will collapse the Fourier Transform
integral into a sum of evenly sampled data.

F (ω) =
∞∑

n=−∞

f(n∆t)e−iωn∆t (2.16)

However, because we are taking N samples, we can let f(n∆t) = fn with the
following limits.

15



F (ω) =
N∑

n=0

fne
−iωn∆t (2.17)

The discrete sum in Equation (2.17), however, requires an additional
step to become the complete Discrete Fourier Transform. This is because
the function does not consider which frequency values ω are of interest, and
if any should and can be rejected. The following section on convolution will
help focus on particular ω values.

Convolution

A helpful property of the Fourier Transform that can give an interpretation
of the Discrete Fourier Transform as well as the frequency (ω) values that
we are interested in is the convolution property.

The convolution property states that the Fourier Transform of the point-
wise multiplication of two functions is equal to the convolution of the Fourier
Transforms of the individual functions. In mathematical form,

F{f · g} = F{f} ∗ F{g} (2.18)

Before continuing with the definition of convolution, it is useful to keep a few
qualitative motivations in mind. Primarily, recall we care about the Fourier
Transform of some function that is the point-wise product of other products.

Defining Convolution

Formally defined, the convolution of two functions f and g is given by ∗ and
can be formally defined by:

[f ∗ g](t) =
∫ ∞

−∞
f(τ)g(t− τ)dτ (2.19)

In this case, τ is some pseudo variable. We use this variable to reflect our
g(τ) function across the y axis and slide the g(τ) function in the τ direction.
The convolution of the two functions can therefore be thought of as the
original two functions sliding over one another, taking the product, and then
integrating that product. Some describe this process conceptually as ”using
one function to smooth and average the other” [Osgood, 2007].
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Figure 2.5 demonstrates can example in which g(t) and f(t) are two
square functions. Each function is drawn in terms of the pseudo variable τ
and then g(τ) is reflected across the y axis (equivalent to taking g(−τ)). As
t increases, g(t − τ) approaches the f(τ) function and then overlaps it. As
the overlap occurs, the product is taken and then integrated across all τ .

Figure 2.5: Example g(τ) and f(τ) functions and the reflected g(−τ) for box
functions. From: https://www.youtube.com/watch?v=N-zd-T17uiEt=148s

For the example in Figure 2.5, the resulting integral (and therefore the con-
volution) is shown in Figure 2.6. The reason this integral is a triangle is
because as t increases, and g(t − τ) begins to overlap f(τ), the integral is
small, but then peaks at the value t in which both boxes are fully over one
another. Because there are box functions, the area overlapping with change
linearly with t, resulting in a triangle.

Figure 2.6: Example convolution of functions from Figure 2.5. From:
https://www.youtube.com/watch?v=N-zd-T17uiEt=148s

Thus, as Fourier Transforms hold under convolution,

F{f · g} = F{f} ∗ F{g} (2.20)
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Convolution Interpretation of Discrete Fourier Transform

Because we now have this convolution property of Fourier Transforms, it
is simple to think about what the Fourier Transform will look like for some
some signal with windowing functions described in Figure 2.4. Performing
this convolution, we notice the result will be a sequence of sinc functions
peaking at some 1

T
where T is the length between each observation. In

Equation (2.16), the T is ∆t. This is not what we want, however, as there
is only one frequency peak for the underlying sine function signal in Figure
2.4.

The multiple peaks are actually aliases of the true underlying curve under
this convolution example. Because these aliases appear, we know that all
signal information can be extracted for some narrower gap of 0 <= ω <=
1/∆t. Although this will not be heavily addressed, these ω limits also give
rise to the Nyquist limit, which gives a limit to the sampling frequency that
can be picked up in a signal — 1

2
of the sampling frequency.

Complete Discrete Fourier Transform Equation

With the understanding of Nyquist limiting frequencies, we can re-write the
discrete Fourier Transform found in Equation (2.16). We define some N
evenly spaced frequencies to run through and define them as ∆ω = 1/N∆t.
The resulting function is:

F (k∆ω) = Fk =
N∑

n=0

fne
−ikn
N (2.21)

Which is the most common form of the Discrete Fourier Transform.

Short Example of Discrete Fourier Transform

To demonstrate an example of the Discrete Fourier Transform, we consider
the function in Figure 2.7. In this equation, we find the Fourier Transform
over N frequency increments of our original function. Each xk is the y value
of our function at each kth increment.

We can now go through an example for this discrete Fourier transform.
For our example graph with N=8, we can compute the components for Fk

with F1 as

18



Figure 2.7: Example sine curve, with each x1, x2, .. representing the y values
corresponding the nth sample.

F1 = 0e−
−i2π(1)(0)

9
+ 0.707e−

−i2π(1)(1)

9
+ ... = 0 (2.22)

each computed Fk can then be listed and plotted to form our Fourier Trans-
form. For our example, we compute

F1 = 0, F2 = 0− 4i, F3 = 0, F4 = 0, ... (2.23)

We find that only our F2 is non-zero, and is therefore plotted as a com-
ponent of our Fourier Transform. An example plot representing this Fn

component is seen in Figure X.

Figure 2.8: Resulting peak of Fourier Transform in Figure 2.7

As suspected, this outcome demonstrates to us that the original function had
one singular sinusoidal component of frequency ω = 1 or T = 2π.
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2.3 Non-Uniform Data Problem

Much of the data that is found in real life, and particularly astronomy related
fields are not uniformly spaced in time. This could be caused by clouds
overhead, gaps of days between observations, etc. Non-uniform observations
pose a problem for the Fourier Transform, due to its assumption of uniform
N samples over the sample period T .

How the Fourier Transform Handles Unevenly Sampled Data

To illustrate how the Fourier Transform misinterprets non-uniform data, we
can consider some simulated data of a sine curve in Figure 2.9. By removing
arbitrarily selected values observations, we can simulate an unevenly-sampled
data set. Figure 2.10 shows the points that were removed in red.

Figure 2.9: Simulated data with random noise from underlying sine function in
gray.

Because the Fourier Transform assumes evenly sampled data, it will auto-
matically interpret all the data points as evenly spaced. In fact, when using
the periodogram function in R, the only requirement is a vector of values —
the time component is not even considered.

More specifically, consider the original, complete data set which had 50
points over a 1 second time period. The Fourier Transform in this case will
correctly assume that the 50 points are evenly spaced, assigning a ∆t of 0.02
seconds. After removing the 12 red data points, there are now 38 data points
available to the Fourier Transform now. So, the Fourier Transform will now
wrongly assume even sampling, assigning a ∆t of 1

38
seconds.
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Figure 2.10: Red points indicating removed observations from the data set

It is not immediately clear how this wrong assumption will influence the
Fourier Transform, so I have created a plot in Figure 2.11 to help demonstrate
the problem. Figure 2.11 shows the remaining, non-removed points in two
different orientation. The 38 points in black are evenly distributed along
the x-axis with a distance of 1

38
seconds between each point. The 38 grey

points are the non-removed points in their original spacing, with uneven gaps
between each point due to the missing data.

Figure 2.11: ”Evenly” sampled data shifted from the unevenly sampled data

If we think about the Fourier Transform as finding the best fitting frequen-
cies for our data, it is clear that if our data is different, then the frequencies
found by the Fourier Transform will also be different or at the least smeared
and noisier. Under the assumption of even sampled data, the Fourier Trans-
form will interpret the data as different than observed, and therefore match
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frequencies to an incorrect data set. Thus, the frequencies will not be correct.
For the purposes of completing this example, Figure 2.12 shows the pe-

riodogram result from performing the Discrete Fourier Transform on the
unevenly sampled data, confirming the smearing as there are two frequency
peaks.

Figure 2.12: Classical periodogram result on unevenly sampled data. The blue
line shows an example curve containing both peak frequencies. The gray line is
the underlying signal.

2.4 Lomb-Scargle Periodogram

The Lomb-Scargle periodogram was developed by Lomb and Scargle [Lomb, 1976]
[Scargle, 1982], with the motivation of handling uneven sampling in astronomy-
related data sets. This method has been popular particularly in astronomy-
related fields. As mentioned in the introduction, it was also the method used
by a group in Japan [Beniyama et al., 2022], which presents results that are
of interest to Pomona to replicate.

22



2.4.1 Original Equation Statement

The Lomb-Scargle periodogram is of the following form. This form consid-
ered in particular some time delay τ that allowed for the precense of unevenly
sampled data. In other words, τ is responsible for the time-invariant capa-
bilities of the periodogram [Scargle, 1982].

Px(ω) =
1

2

(
[
∑

j f(tj)cos(ω(tj − τ)]2∑
j cos

2((ω(tj − τ))
+

[
∑

j f(tj)sin(ω(tj − τ)]2∑
j sin

2((ω(tj − τ))

)
(2.24)

where τ is given by:

tan(2ωτ) =

∑
j sin(2ωtj)∑
j cos(2ωtj)

(2.25)

The derivation of this Lomb-Scargle periodogram is beyond the scope of
this paper, but can be found in [Scargle, 1982]. For a qualitative understand-
ing, Scargle has chosen functions for an and bn that create a generalization
of the Fourier Transform and therefore the Periodogram for our uneven sam-
pling. We can see the skeleton of a trigonometric form of the Discrete Fourier
Transform in the numerators in the fraction — they are the squared discrete
Fourier Transform components.

The τ value is considered in greater detail in [Scargle, 1982]. The term is
added for the cases in which the underlying signal is phase shifted during our
window of observation. Therefore, τ is included to create the time invariant
nature of the Lomb-Scargle periodogram. As Scargle describes, τ achieves
this when it holds for Equation (2.25) because Equation (2.25) says that if
any tj is shifted by T0 (in other words, tj becomes tj + T0, then τ becomes
τ + T0, effectively giving the periodogram the same form under any shift.

Least-Squares Approach

Although the interpretation of Equation (2.24) is quite difficult to under-
stand, Lomb describes how the resulting periodogram will have peaks corre-
sponding to least squares values from fitting a sinusoid model to the data.
In other words, we can take some function at a frequency ω

y(t;ω) = Acos(ω(t)) +Bcos(ω(t)) (2.26)
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At each frequency, the χ2 statistic is taken for the model, defined as

χ2(ω) =
∑
n

(yn − y(tn;ω))
2 (2.27)

We can then find the best fit by minimizing the χ2(ω) values. Note that
the A and B values can be calculated using sinusoid fitting methods found
at [Bloomfield, 2004] for some given frequency.

Calling the minimizing value χ̂2(ω), the periodogram is then defined as

P (ω) =
1

2
[χ̂2

0 − χ̂2(ω)] (2.28)

where χ̂2
0 is the non-varying reference model [VanderPlas, 2018].

Note that if there desire to learn about the equivalence of this least squares
approach at that of Equation (2.24), please refer to the Appendix of Scargle
[Scargle, 1982] and Lomb [Lomb, 1976].
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Chapter 3

Exploration Through Analysis
of Catalog Data

To complete my investigation of Fourier Analysis Using the Lomb-Scargle
periodogram, the following section begins to construct practices for using
the Lomb-Scargle Periodogram on real asteroid data. For this process, I use
catalog data from the LCDB [NASA, 2022a]. To calculate the Lomb-Scarlge
Periodogram, I used the functions within the lomb package in R [Ruf, 1999].

3.1 Methodology

In this analysis, I consider three lightcurves coming from the LCDB. The
asteroids of interest are numbered 503293, 508871, and 504025. Each can be
searched on NASA’s Small-Body Database Lookup website to find referenced,
well established periods.

An example light-curve plot for the object 508871 is shown in Figure 3.1.
It is important to note that each data point in this plot comes with some
uncertainty in the magnitude.

To perform the periodogram analysis, I implemented a similar method
to that done in [Beniyama et al., 2022]. For each target, the data were re-
sampled 5000 times under the assumption that each data point’s magnitude
was the mean of a normal distribution with standard deviation of the mag-
nitude error. After taking the 5000 re-samples, the average of all resulting
periodogram maximum-peak frequencies was recorded as the period for that
target.
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Figure 3.1: Light curve data for target 508871.

3.2 Results and Discussion

Target LCDB Established Period My Found Period
503293 8.8 hrs 9.144 hrs
508871 12.998 hrs 6.486 hrs
504025 13.2 hrs 6.445 hrs

Table 3.1: My Periodogram Results and Established, Known periods recorded
from the LCDB

Interestingly, the results referenced were often twice that of what I was
recording with the Lomb-Scargle method. To investigate, plots of phase-
folded light-curves based on the reported periods were made. In the example
of 508871 it is evident that there are two peaks within the period. This
difference is most likely due to a physical interpretation of period that I
am not aware of. If this physical interpretation is particularly necessary,
then it would help to consider a second-order periodogram as described
in [VanderPlas, 2018]. An example for how this second-order periodogram
changes the interpretation is shown in Figure 3.2.

Much like that in Figure 3.2, the single-order interpretation is finding
half of the reported period. Without the use of a second-order periodogram,
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Figure 3.2: Demonstration of multiple-term model doubling resulting period
for binary star. Note this is an object not analyzed in my table. From:
[VanderPlas, 2018]

it is important to still consider how my results matched with that of half
the reported period for those objects in which two peaks were within the
designated period. Table 3.2 shows these new results for , which are con-
siderably more promising and demonstrate the validity of the Lomb-Scargle
periodogram.

Target LCDB Period Half (When Two Peaks) Found Period
503293 8.8 hrs 9.144 hrs
508871 6.5 hrs 6.486 hrs
504025 6.6 hrs 6.445 hrs

Table 3.2: Periodogram Results and Recorded Known Values from LCDB

Interestingly, though, the results are not exactly correct. It also seems
that the results reported are better when looking at the phase-folded curves,
and noticing them as having a tighter distribution of points. This demon-
strates that the Lomb-Scargle periodogram may not be an extremely precise
measure of periodicity, but can be a good estimator. In specific, none of my
found periods were greater than 3% from the registered LCDB values after
halving those with two peaks. It is also possible that the data available may
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be the cause of the slight lack of precision.

3.3 Conclusion

The Lomb-Scargle periodogram is a methodology used to extract periodic
tendencies from unevenly sampled data. In this thesis, I explored the foun-
dations of periodogram analysis in Fourier Series and Fourier Transforms,
and the extension to the Lomb-Scargle periodogram. When applying the
Lomb-Scargle periodogram to real datasets, it was clear that the periodogram
correctly interpreted periodic tendencies, with results being within 3% of the
established periods (or half periods). It did become apparent, however, that
to extract exact periods, other methodologies may be necessary, including
multi-term Lomb-Scargle periodogram analysis. Further work can be done
to explore alternate methods, and/or work towards determining whether the
lack of precision in the Lomb-Scargle technique was due to the data I pro-
vided the R function rather than the methodology itself.
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