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Abstract

Making predictions on imbalanced data is a challenge in many industries,
including finance and medical research. Standard classification technologies
typically bias prediction towards the majority class, resulting in poor ac-
curacy for minority cases. Often, as in situations like credit card fraud or
cancerous gene prediction, the minority cases are the ones statisticians are
most keen on understanding. The advancement of gene expression technol-
ogy and the proliferation of data availability has prompted statisticians to
engineer ways to wrangle data in order to better make predictions on the
minority class. Standard practice is to combine undersampling and oversam-
pling. The purpose of this paper is to exposit a method of oversampling that
goes beyond the standard practice of duplicating existing points–synthetic
minority oversampling technique. We describe Chawla’s 2002 algorithm and
discuss the theoretical properties of SMOTE-augmented data sets, as well as
classifier performance on high-dimensional data sets [Chawla et al., 2002].
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Chapter 1

Background

1.1 Imbalanced Data

A framework for the problem of imbalanced data will be provided by dis-
cussing why such data leads us astray and how previous methods of fixing
this problem have been insufficient. We will focus on the problem of making
predictions on two classes only.

Balanced data occurs when a data set has roughly the same percentage of
points for two different defining characteristics, or classes. For example, a
randomly sampled data set that captures demographic info on a group of
people can be divided into two classes: male and female. Imbalanced data
occurs when the defining characteristic being assessed divides into two vastly
uneven classes. For instance, if a researcher is interested in learning about
the difference between fraudulent and normal credit card transactions, a
data set that captures transactions in any given region or time period would
have vastly more normal transactions because of how prolific credit card
transactions generally are. Imbalance is prevalent in many fields such as
internet, finance, and biomedical research. Imbalance becomes a problem
when the characteristic that is most important to understand is the one that
manifests as a minority.
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1.2 Balancing Techniques

Initial practices for rectifying imbalanced data include undersampling and
oversampling. Undersamping involves randomly removing as many points
from the majority class as needed in order to make the two classes even. Un-
dersampling is a popular starting point to fix imbalanced data and is sufficient
for situations where the imbalance is not serious. Standard oversampling in-
volves randomly duplicating existing minority points until the classes are
roughly equivalent in size. This practice often does not accurately capture
the behavior of the minority class, particularly in extreme cases of imbalance.
The small number of points in the minority class means that any extreme
value, or any value that does not reflect the natural behavior of a group
(an outlier), has a great deal of relative gravity when duplicated during the
oversampling process.

Standard oversampling by duplicating existing points compounds the effect
of outliers. In another sense, the point of fixing imbalanced data is to try to
more accurately represent the minority class, and duplicating points strength-
ens the existing insufficient representation.

1.3 Machine Learning Classification

Machine learning is the automated process of creating classification algo-
rithms or functions on a set of data. Algorithms or functions that use in-
formation from a data set to make class predictions on that data are called
classifiers. There are many different types of classifiers. Some form a divide
between classes ranging in complexity from a line to hyperplane depending on
the dimension of a data set. Others systematically make predictions based
on Euclidean distance between points. Model-building requires a method
of measuring performance that can motivate the creation of better models.
Accuracy–the proportion of points classified correctly–is a common method
of classifier evaluation. Imbalanced data requires a more sophisticated type
of performance assessment, since a classifier trained to classify every incom-
ing point in the majority class might have an accuracy as high as 99%, if the
minority class represents only 1% of the data.
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1.4 Performance Assessment

A Receiver Operating Characteristic curve (ROC curve) plots false positive
rate versus true positive rate. A curve represents a single classifier and its
performance under varying cutoffs, where higher area under the curve indi-
cates better overall performance when compared to other classifiers (other
curves).

1.5 K-Nearest Neighbors Classifier

K-Nearest Neighbors (k-NN) is a classification method whose algorithm is
used within the SMOTE process. In order to motivate a discussion of the
SMOTE algorithm, we include a description of k-NN [James et al., 2013] us-
ing notation from Blagus and Lusa [Blagus and Lusa, 2013]:

Given a positive integer k and a test observation x0, the k-NN classifier
first identifies the k points in the training data that are closest to x0,
represented by R0. It then estimates the conditional probability for
class j as the fraction of points in R0 whose response values equal j:

Pr(Y = j|X = x0) =
1
k

∑
iϵR0

I(yi = j). [James et al., 2013]

In other words, given a data point x0 whose class is unknown, select k nearest
points–according to Euclidean distance–whose classes are known, then pre-
dict the class of x0 based on the most common class out of the k neighbors.
For example, if the five nearest points to some data point consist of three
majority class points and two minority class points, then the point of interest
will be classified as a majority class point (if the classification threshold is
0.5). A k-NN classifier uses a certain number of training data nearest to
the test data predictor, then estimates the probability that the outcome will
belong to a certain class.
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Chapter 2

SMOTE Algorithm

Standard oversampling techniques lack the ability to build a better under-
standing of class behavior; they typically magnify the impact of existing
points. SMOTE enhances standard oversampling by creating synthetic points
that deviate slightly from existing points but are still based off of them. While
SMOTE does not add new information to the data set, by investigating the
algorithm’s theoretical properties we can discover which classifiers to use and
which ones to avoid.

The SMOTE algorithm is a simple process that works as follows:

1. Select an existing (real) minority data point, or vector. Call it v0.

2. Establish k, the number of nearest neighboring vectors to v0. Out of the
k nearest neighbors, select one at random, call it v1.
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3. Subtract v1 and v0 to get v2.

v2 = v1 − v0

4. Multiply v2 by a random scalar between 0 and 1, call the new vector v3.
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v3 = c · v2

5. Add v3 to the original data vector v0 to get the final vector v4.

v4 = v3 + v0

v4 is now a synthetically-created minority data point. The previously de-
scribed process is the creation of 1 additional minority data point. Repeat
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the process for every existing minority data point until balance is achieved.

When using SMOTE, standard practice is to combine undersampling of the
majority and the synthetic oversampling of the minority to achieve desired
balance. For example, say a dataset contained 10 minority observations and
250 majority ones. A researcher using SMOTE would first undersample by
removing a number of the majority points and then synthetically oversample
the minority. If the researcher decided to randomly remove 150 majority
points, 9 cycles of the SMOTE algorithm would be done in order to achieve
50/50 balance. Specifically, each minority point would be used 9 times in the
synthetic creation of a new points.

SMOTE utilizes randomness in its algorithm in order to best mimic the
natural world. The prevalence of imbalanced data prompted statistical re-
searchers to improve existing methods of rectifying imbalanced data. The
natural world in theory involve points that are slightly different than ex-
isting minority data points. SMOTE does its best to mimic the existing
data and thus the natural process it describes through strategic inclusion
of randomness in the algorithm. Randomness comes from two steps in the
algorithm: the random choice from k nearest neighbors and multiplying by
a random number between 0 and 1. The randomness is reigned in by the
relationship of new synthetic points to existing minority vectors.
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Chapter 3

Theoretical Properties of
SMOTE-Augmented Data

The SMOTE algorithm changes certain statistical and probabilistic proper-
ties of the data it augments, impacting classifier performance in intricate
ways. This section provides comprehensive guides to the proofs behind the-
oretical changes to expected value, variance, correlation, and Euclidean dis-
tance in SMOTE-augmented data sets. Chapter 4 will discuss practical con-
sequences of these changes.
The notation and steps from all proofs come directly from Blagus and Lusa.
[Blagus and Lusa, 2013, 15]

3.1 Notation

Let X = {X1, X2, ..., Xp} be the p random variables measured for data point
(or observation) X. Define the jth dimension of a SMOTE sample (S =
{S1, ..., Sp}), as

Sj = Xj + U(Rj −Xj),

where X is a sample from the minority class and R = {R1, ..., Rp} is a ran-
domly chosen sample among the k samples from the minority class with one
of the k smallest Euclidean distances from sample X; U is a uniform random
variable defined on the interval (0, 1), independent of the other variables.
The subscripts indicate the variables of a sample.
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3.2 Methods

For the high-dimensional simulations, Blagus and Lusa used samples of 100,
with each observation having 1000 variables. 20 variables were chosen to
deferentially express between classes. The variables were simulated from a
normal distribution, with those in Class 1 having mean 0 and variance 1,
where the variables of Class 2 were simulated with mean µ = 2, 1, .7, .5,
given at random, and variance 1. The variables’ correlation was constructed
in block-exchangeable form, where sets of 10 had pairwise correlation of
ρ = 0, .2, .5, .8. Blocks were independent from each other. 80 observations
were allocated to the training set, and 20 to the test set. The test set was
balanced, but the training set was given imbalance anywhere between .05
and .95 percent of the points in Class 1.

For the low-dimensional simulations, the same construction was used but
observations had 5 or 10 variables that were all differentially expressed and
correlated with ρ = .8. In addition, the sample sizes were varied by n =
40, 80, 200).

3.3 Motivating Simulation Results

Blagus and Lusa conducted a different set of simulations than described above
in order to empirically investigate expected value, variance, and correlation
between different sample types coming from different dimensions. Table ??
summarizes the results of those simulations using simulation averages. One
entry of 0.66, for example, provides the variance of a SMOTE sample created
from data in a normal distribution using a dimension of 10000, or a data set
with 10000 variables.

They built the data sets by establishing true population means and variances
as equal to 1. ρ(S,X) denotes the correlation coefficient between the SMOTE
sample and the original sample used to generate it. The exponential distri-
bution is positively asymmetric while the normal and uniform distributions
are symmetric.

The following table summarizes the simulations.
Table 1
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Table 3.1: Each cell is an average of observation values in the simulation
conducted by Blagus and Lusa. E denotes expected value, var variance,

and ρ correlation. 2, 10, 100, 1,000, and 10,000 refer to number of variables
for each observation in a sample. Observations were pulled from Normal,

Exponential, and Uniform distributions.

The simulation results align with the authors’ theoretical findings (See Chap-
ter 4). Observe the expected value rows for X and S in any distribution, in
the 10,000 variables column: the entries are around 1; expected value of a
SMOTE sample closely matches the expected value of the original samples,
both equalling 1. Observe the variance rows for X and S in any distribution,
in the 10,000 variables column: the entries are .66; in high dimensions, vari-
ance of SMOTE samples is roughly 2/3 the variance of the original samples.
Observe the row ρ(S,X) in any distribution, in the 10,000 variables column:
whereas ρ(R,X) and ρ(R,XNN) approach zero in high dimensions for any
distribution, ρ(S,X) is .63, .63, and .64, indicating SMOTE introduces a cor-
relation between original and SMOTE samples.

The following sections will provide a theoretical framework for and corrobo-
rate these simulation findings.

3.4 Expected Value

The expected value of a class that has been augmented by SMOTE
is the same as the expected value of the same class that has not
been augmented by SMOTE.

In general, we wish to show E(X) = E(S). Samples themselves are vectors,
in order to more easily prove theoretical properties Blagus and Lusa isolated
samples into one variable, the jth.
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Claim:

For high-dimensional samples or for samples taken from symmetric distribu-
tions:

E(Sj) = E(Xj)

(3.1)

Proof:

E(Sj) = E(Xj + U(Rj −Xj))

E(Sj) = E(Xj) + E(U)(E(Rj)− E(Xj))

E(Sj) = E(Xj) + E(U)E(Rj)− E(U)E(Xj)

E(Sj) =
1

2
(E(Rj) + E(Xj))

(3.2)

Recall from Section 3.1 that U is a uniform random variable defined on the
interval (0, 1). The final equation holds since E(U) is equal to 1

2
. We are

able to assign this value to E(U) because “U is independent of the variables
Xj and Rj, and because we assumed the equality of the expected values in
the minority class.” [Blagus and Lusa, 2013] Recall that the expected value
of the SMOTE samples is equal to the expected value of the original sam-
ples for symmetric or high-dimensional data. So the final expression can be
simplified to E(Sj) = E(Xj).

It follows that E(S) = 1
2
(E(R) + E(X)).

3.5 Variance

SMOTE decreases the variability of the (SMOTE-augmented) mi-
nority class

Claim:
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var(Sj) =
1

3
var(Xj) +

1

3
var(Rj) +

1

3
cov(Xj, Rj) +

1

12
E(Xj)

2 +
1

12
E(Rj)

2 − 2

12
E(Xj)E(Rj) (3.3)

Since E(Xj) = E(Rj) for symmetric distributions, Equation 3.3 simplifies to

var(Sj) =
1

3
var(Xj) +

1

3
var(Rj) +

1

3
cov(Xj, Rj)

for high dimensional daa with covariance going to zero,

var(Xj) = var(Rj)

See Table 3.3.

Proof:

Recall:

E(Sj) = E(Xj + U(Rj −Xj))

E(U) =
1

2

E(U2) =
1

3

for U(0, 1).

Variance can be expressed as:

var(Sj) = E(S2
j )− E(Sj)

2 (3.4)

Expand the first term:

E(S2
j ) = E((Xj + U(Rj −Xj))

2)

= E(X2
j +RjUXj − UX2

j +RjUXj +R2
jU

2 −
RjU

2Xj − UX2
j −RjU

2Xj + U2X2
j )
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Apply expected value to each term:

E(S2
j ) = E(X2

j ) + E(Rj)E(U)E(Xj)− E(U)E(X2
j ) +

E(Rj)E(U)E(Xj) + E(R2
j )E(U2)− E(Rj)E(U2)E(Xj)−

E(U)E(X2
j )− E(Rj)E(U2)E(Xj) + E(U2)E(X2

j )

Replace each E(U) and E(U2) with 1
2
and 1

3
, respectively:

E(S2
j ) = E(X2

j ) +
1

2
E(Rj)E(Xj)−

1

2
E(X2

j ) +

1

2
E(Rj)E(Xj) +

1

3
E(R2

j )−
1

3
E(Rj)E(Xj)−

1

2
E(X2

j )−
1

3
E(Rj)E(Xj) +

1

3
E(X2

j )

Group terms:

E(S2
j ) = E(X2

j )−
1

2
E(X2

j )−
1

2
E(X2

j ) +

1

3
E(X2

j ) +
1

2
E(Rj)E(Xj) +

1

2
E(Rj)E(Xj)

−1

3
E(Rj)E(X2

j )−
1

3
E(Rj)E(Xj) +

1

3
E(R2

j )

Simplify:

E(S2
j ) =

1

3
E(X2

j ) +
1

3
E(Rj)E(Xj) +

1

3
E(R2

j )

We return to the latter part of equation (3.4). Recall:

E(S) =
1

2
(E(R) + E(X))

So,

E(Sj)
2 = (

1

2
(E(R) + E(X)))2

Expand:

E(Sj)
2 =

1

4
E(Rj)

2 +
1

2
E(Rj)E(Xj) +

1

4
E(Xj)

2
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Combine expressions from Equation (3.4):

var(Sj) =
1

3
E(X2

j ) +
1

3
E(Rj)E(Xj) +

1

3
E(R2

j )−

(
1

4
E(Rj)

2 +
1

2
E(Rj)E(Xj) +

1

4
E(Xj)

2)

Split the −1
4
E(R2) term into −1

3
E(R)2+ 1

12
E(R)2, the −1

2
E(Rj)E(Xj) term

into −1
3
E(X)E(R) and −1

6
E(X)E(R), the 1

4
E(Xj)

2) term into −1
3
E(X)2 +

1
12
E(X)2 to get the following:

var(Sj) =
1

3
E(X2) +

1

3
E(R2) +

1

3
E(XR)

−1

3
E(R)2 +

1

12
E(R)2 − 1

3
E(X)E(R)

−1

6
E(X)E(R)− 1

3
E(X)2 +

1

12
E(X)2

Group terms:

var(Sj) =
1

3
E(X2)− 1

3
E(X)2 +

1

12
E(X)2

+
1

3
E(R2) +

1

12
E(R)2 +

1

3
E(XR)

−1

3
E(X)E(R)− 2

12
E(X)E(R)

Group terms in such a way that we can use the definition of covariance in
the last step:

var(Sj) =
1

3
(E(X2)− E(X)2) +

1

3
(E(R2)

−E(R)2) +
1

3
(E(XR)− E(X)E(R))

+
1

12
E(X)2 +

1

12
E(R)2 − 2

12
E(X)E(R) (3.5)

The last three terms of Equation 3.5 equal 1
2
((E(X)− E(R))2).
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Use the definitions of variance and covariance to achieve the final result:

var(Sj) =
1

3
var(Xj) +

1

3
var(Rj) +

1

3
cov(Xj, Rj)

+
1

12
E(Xj)

2 +
1

12
E(Rj)

2 − 2

12
E(Rj)E(Xj)

var(Sj) =
1

3
var(Xj) +

1

3
var(Rj) +

1

3
cov(Xj, Rj)

+
1

12
E(Xj)

2 +
1

12
E(Rj)

2 − 2

12
E(Rj)E(Xj)

The last three terms of Equation 3.5 equal 1
2
((E(X) − E(R))2). In high

dimensions, therefore, the simulations in Table 3.3 showed that the expected
value of an original sample X approaches the expected value of a neighbor
R. Simulations showed that the correlation and thus the covariance of R
and X is roughly 0 in high dimensions. So the above expression simplifies to:

var(Sj) =
1

3
var(Xj) +

1

3
var(Rj)

=
2

3
var(Xj) (3.6)

In Section 4.2 we will show the ramifications of a shrunken variance as a
result of SMOTE.

3.6 Independence

SMOTE introduces a correlation between samples
Let Ss

j and St
j s ̸= t be the jth variables of two different SMOTE samples, de-

fined as Ss
j = Xs

j +U s(Rs
j−Xs

j ) and St
j = X t

j+U t(Rt
j−X t

j), where U
s and U t

are independent uniform variables U(0, 1) andXs
j , X

t
j , R

s
j and Rt

j are samples
from the minority class. Rs

j and Rt
j are randomly chosen among the 5 nearest

neighbors of Xs and X t, respectively. The SMOTE algorithm could be mod-
ified to have a random choice among 3 or 7 nearest neighbors rather than
5, but 5 is conventional when using k-NN in general. [Blagus and Lusa, 2013]
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Ss
j and St

j are still such that s ̸= t even if Xs and X t or Rs and Rt that are
involved in Xs

j +U s(Rs
j −Xs

j ) and X t
j +U t(Rt

j −X t
j) might be the same. For

clarity, depending on how imbalanced a dataset is, the SMOTE algorithm
may be performed multiple times on each data point. So there are syntheti-
cally created points that are borne from the same original minority point. In
addition, it is possible that two synthetic points are created using the same
neighbor. Both of these things can happen at once as well. The following
proof shows that if an original data point and/or its nearest neighbor are
used for multiple SMOTE data points, a correlation is introduced.

We assume that var(Xs
j ) = var(Xj) for all the samples s of the minority

class. [Blagus and Lusa, 2013]

Claim:

Assuming that the samples of the minority class are independent between
each other and have the same variances for the jth variable var(Xs

j ) =
var(Xj) for all the sth and tth samples of the minority class, the correla-
tion (ρ) of the jth variable between SMOTE samples is

ρ(Ss
j , S

t
j) =


( 1
4
(var(Xj) + var(Rj)) + 1

2
cov(Rj , Xj))/var(Sj), if (Xs

j = Xt
jandR

s
j = Rt

j)or(X
s
j , R

t
jandX

s
j = Rt

j)

( 1
4
(var(Xj) + 1

2
cov(Rj , Xj))/var(Sj), if (Xs

j = Xt
jandR

s
j ̸= Rt

j)

( 1
4
(var(Xj) + 1

2
cov(Rj , Xj))/var(Sj), if (Xs

j ̸= Xt
jandR

s
j = Rt

j)

0, otherwise

For high dimensions the correlation simplifies to:

ρ(Ss
j , S

t
j) =


3
4
, if (Xs

j = X t
jandR

s
j = Rt

j)or(X
s
j , R

t
jandX

s
j = Rt

j)
3
8
, if (Xs

j = X t
jandR

s
j ̸= Rt

j)
3
8
, if (Xs

j ̸= X t
jandR

s
j = Rt

j)
0, otherwise

Proof:

cov(Ss
j , S

t
j) = cov(Xs

j + U s(Rs
j −Xs

j ), X
t
j + U t(Rt

j −X t
j))

= cov(Xs
j , X

t
j) + E(U)cov(Xs

j , R
t
j)− E(U)cov(Xs

j , X
t
j) +

E(U)cov(Rs
j , X

t
j) + E(U)2cov(Rs

j , R
t
j)− E(U)2cov(Rs

j , X
t
j)−

E(U)cov(Xs
j , X

t
j)− E(U)2cov(Xs

j , R
t
j) + E(U)2cov(Xs

j , X
t
j)

=
1

4
(cov(Xs

j , X
t
j) + cov(Xs

j , R
t
j) + cov(Rs

j , X
t
j) + cov(Rs

j , R
t
j)(3.7)

Equation 3.7 provides a general equation for the covariance between two
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different SMOTE samples. In the process of creating a SMOTE sample, an
original minority sample is randomly chosen and one of its nearest neighbors
is randomly chosen, given by X and R. Even if two SMOTE samples are not
exactly the same it is possible for them to have been created using the same
original sample, the same nearest neighbor, or both. The following piecewise
function uses properties of the possibility of the same original or SMOTE
sample so simplify Equation 3.7 in certain ways.
Assuming that the samples in the minority class are independent but can be
correlated with their nearest neighbors we obtain

cov(Ss
j , S

t
j) =



1
4
(var(Xj) + var(Rj))+ if (Xs

j = X t
jandR

s
j = Rt

j)
1
2
cov(Rj, Xj), or(Xs

j , R
t
jandX

s
j = Rt

j)

1
4
(var(Xj)) +

1
2
cov(Rj, Xj), if (Xs

j = X t
jandR

s
j ̸= Rt

j)

1
4
(var(Rj)) +

1
2
cov(Rj, Xj), if (Xs

j ̸= X t
jandR

s
j = Rt

j)

0, otherwise
For high-dimensional data, where covariance between original SMOTE sam-
ples and their nearest neighbors becomes zero, the result simplifies to

cov(Ss
j , S

t
j) =


1
2
var(Xj), if (Xs

j = X t
jandR

s
j = Rt

j)or(X
s
j , R

t
jandX

s
j = Rt

j)
1
4
var(Xj), if (Xs

j = X t
jandR

s
j ̸= Rt

j)
1
4
var(Xj), if (Xs

j ̸= X t
jandR

s
j = Rt

j)
0, otherwise

The correlations between two variables are derived with the usual formula

ρ(X, Y ) = cov(X,Y )√
var(X)var(Y )

Using this formula we arrive at the claim:

ρ(Ss
j , S

t
j) =


( 1
4
(var(Xj) + var(Rj)) + 1

2
cov(Rj , Xj))/var(Sj), if (Xs

j = Xt
jandR

s
j = Rt

j)or(X
s
j , R

t
jandX

s
j = Rt

j)

( 1
4
(var(Xj) + 1

2
cov(Rj , Xj))/var(Sj), if (Xs

j = Xt
jandR

s
j ̸= Rt

j)

( 1
4
(var(Xj) + 1

2
cov(Rj , Xj))/var(Sj), if (Xs

j ̸= Xt
jandR

s
j = Rt

j)

0, otherwise

High dimensions allow us to assume that the a sample and a nearest neigh-
bor can be treated as independent minority samples, leading to the following
simplification:
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ρ(Ss
j , S

t
j) =


3
4
, if (Xs

j = X t
jandR

s
j = Rt

j)or(X
s
j , R

t
jandX

s
j = Rt

j)
3
8
, if (Xs

j = X t
jandR

s
j ̸= Rt

j)
3
8
, if (Xs

j ̸= X t
jandR

s
j = Rt

j)
0, otherwise

The variance of the SMOTE samples was found in Section 3.5. The covari-
ance between a SMOTE sample and original samples in the high-dimensional
setting can be derived using the same procedure described above, and is equal
to

ρ(Ss
j , Xj) =

{
1
2
var(Xj), if (Xs

j = XjorXj = Rs
j)

0, otherwise
therefore the correlation between a SMOTE sample and an original sample
is equal to

√
3

2
√
2
.

In practice the correlation between a SMOTE and original sample and two
SMOTE samples tend to be even higher because each original sample has a
slightly positive correlation with its nearest neighbor.

We have shown that there is some correlation between a SMOTE an original
sample in high dimensions.

3.7 Euclidean Distance

SMOTE reduces the expected Euclidean distance between test
samples and the (SMOTE-augmented) minority class

Claim:

E(d2(X test, X)) = 2p · var(X) > 2p5
6
· var(X) = E(d2(X test, S))

p represents the number of variables, so the addition of the 5
6
term shows

that under general circumstances, the squared Euclidean distance between a
test sample and a SMOTE sample is less than that between a test sample
and an original sample.

Proof:
Euclidean squared distance between a test and original sample is given be-
low. The fact that a test sample and an original sample are independent
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allows us to reach the following simplification. The expected value of a test
sample and the expected value of an original sample are the same. The fact
that var(X) = E(X2) − E(X)2 allows us, in particular, to make the last
simplification:

E
(
d2
(
Xtest ,X

))
= E

(
p∑

j=1

(
Xtest

j −Xs
j

)2)

=

p∑
j=1

E
((

Xtest
j −Xs

j

)2)
=

p∑
j=1

(
E
((

Xtest
j

)2)− 2E
(
Xtest

j

)
E
(
Xs

j

)
+ E

((
Xs

j

)2))
= 2 · p · var(X)

Below is the Euclidean squared distance between a test observation and a
SMOTE sample.

E
(
d2
(
Xtest ,S

))
=E

(
p∑

j=1

(
Xtest

j − (Xj + U (Rj −Xj))
)2)

=

p∑
j=1

E
((

Xtest
j − (Xj + U (Rj −Xj))

)2)
=

p∑
j=1

E((Xtest
j −Xj − URj + UXj)

2)

=

p∑
j=1

(
4

3
E
(
X2

j

)
+

1

3
E
(
R2

j

)
+

1

3
E (XjRj)− E (Xj)

2 − E (Xj)E (Rj)

)
=p ·

(
4

3
var (Xj) +

1

3
var (Rj) +

1

3
cov (Xj, Rj)+

+
1

3
E (Xj)

2 +
1

3
E (Rj)

2 − 2

3
E (Xj)E

(
RNN

j

))
,

For symmetric distributions the expression simplifies to

E
(
d2
(
Xtest,S

))
= p ·

(
4

3
var (Xj) +

1

3
var (Rj) +

1

3
cov (Xj, Rj)

)
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and for high-dimensional data to

E
(
d2
(
Xtest,S

))
= 2 · p · 5

6
· var(X)

We have shown that the expected value of Euclidean squared distance be-
tween a test sample and an original sample is less than that between a test
sample and a SMOTE sample.
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Chapter 4

Practical Consequences of
Theoretical Properties

We have explored the theoretical properties of SMOTE-augmented data. In
short: expected value of a data set is unchanged, variance is shrunk, correla-
tion is introduced in certain contexts, and Euclidean distance is shortened in
certain contexts. These theoretical changes have varying levels of impact on
the particular classifier chosen to predict on the SMOTE-augmented data.
The following sections will explore several examples of classifiers that are
impacted in some way by SMOTE-augmented data and the mathematical
background for why they are impacted.

Notation
G: general label for class number.
X: general label for a sample vector.
Σ: covariance matrix for a dataset.
Σk: covariance matrix for class k.
k: specific label for class number.
µk: mean of class k.
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Figure 4.1: Linear Discriminant Analysis uses a linear boundary to divide
and predict classes [Buitinck et al., 2013]

4.1 Expected Value: LDA and PAM

Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a classification algorithm used to find
a linear combination of features that separates two or more classes of objects
or events. It is depicted in Figure 4.1. [Buitinck et al., 2013]

Observe that the classifier built a line inside the data set that best separates
two classes.

Each observation will be given a probability of class membership. The math-
ematics behind LDA classification, in conjunction with a certain theoretical
property of SMOTE, will show why the LDA classifier does not perform dif-
ferently depending on whether it is being used on SMOTE-augmented data.

Based on the class balance, each class k ∈ {1, . . . , K} is assigned a prior π̂k

such that
∑K

i=1 π̂k = 1.
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According to Bayes’ rule, the posterior probability that object G belongs to
class k is

Pr(Ĝ = k|X = x) = fk(x)πk∑K
m=1 fm(x)πm

where fk(x) is the density of X for class k. The posterior probability is a
type of conditional probability that results from updating the prior proba-
bility with information summarized by the likelihood of G associated with a
class k given G’s observed data of x.

To estimate the most likely class given x:

G(x) = argmax
k

Pr(G = k|X = x) = argmax
k

fk(x)πk (4.1)

LDA assumes the data likelihood is Gaussian:

fk(x) = |2πΣk|−1/2 exp
(
−1

2
(x− µk)

TΣ−1
k (x− µk)

)
Natural log is monotonically increasing, so maximum and minimum argu-
ments of a function remain the same after the natural log of the function has
been taken.

We plug the likelihood into the earlier classification function, Equation 4.1:

= argmaxk δk(x) = argmaxk log(fk(x)πk)

where

δk(x) = −1
2
log |Σ| − 1

2
(x− µk)

TΣ−1(x− µk) + log πk

and Σ is the covariance matrix of all the explanatory variables in the data
set, regardless of class.

Σ̂ = 1
N−K

∑K
k=1

∑
i∈k(xi − µ̂k)(xi − µ̂k)

T

23



SMOTE is used specifically to improve the performance of classifiers and
other prediction algorithms, yet the performance of LDA is unchanged on
SMOTE-augmented data. In Chapter 3 we proved that SMOTE does not
change the expected value of data, and we have shown how this impacts
classifiers using the math behind LDA.

The following topic explores the probabilistic background of Quadratic Dis-
criminant Analysis, a classifier that will behave differently on SMOTE-augmented
data.

Quadratic Discriminant Analysis

Quadratic Discriminant Analysis is similar to LDA, except the borders it
creates between classes is quadratic rather than linear, or is allotted two
dimensions of flexibility. Observe Figure 4.2.

4.2: Quadratic Discriminant Analysis forms boundaries between classes
using two dimensions and class-specific variances [Blagus and Lusa, 2013]

QDA behaves almost exactly like LDA, except it estimates
∑

k separately
for each class:

δk(x) = −1
2
log |Σk| − 1

2
(x− µk)

TΣ−1
k (x− µk) + log πk .
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δk(x) is plugged into Equation 4.1 in order to classify observations.
The classifier for SMOTE-augmented data must be chosen carefully; clas-
sifiers that rely heavily on class-specific variance, like QDA, are negatively
impacted by SMOTE. In section 3.5 we discussed how applying the SMOTE
algorithm to a data set impacts that data set’s variance by shrinking it to 2

3

its original size. Since SMOTE causes the data to have a variance that does
not accurately reflect that natural phenomenon’s variance in the real world,
using classifiers that utilize variance is unwise for SMOTE-augmented data.
Observe the size of the ellipses in Figures 4.1 and 4.2. LDA uses an over-
all variance, where the size of the ellipses are fixed between the two classes.
QDA, however, as shown in the probabilistic interpretation, captures the
varying orientation and shape of the ellipses among different classes. In data
sets with differing variance structures between the two classes, QDA performs
better than LDA because it captures the differing structures. However, see
Section 3.5 for the proof that SMOTE decreases variability in the minority
class, so fitting QDA onto SMOTE-augmented data empirically results in
poor classifier performance. Due to its use of overall covariance rather than
class-specific covariance, fitting LDA onto SMOTE-augmented data would
result in performance that is equivalent before and after augmentation. QDA
uses class-specific variance, which means that the classifier would be using
the variance in the new, SMOTE-augmented and shrunken-variance minority
class. This would cause a substantial change in the model between the non-
and SMOTE-augmented data sets.

One classifier used by Blagus and Lusa whose performance is related to its un-
changing expected value is Prediction Analysis for Microarrays (PAM)[Tibshirani et al., 2003],
which is a classifier that uses centroids of clusters to determine a class. So
from a mean-stand point it performs similarly to LDA and isn’t affected
that much by SMOTE. It differs from LDA particularly because it places
more emphasis on prior probabilities, which take into account the existing
proportion per class. Specifically, if a data set is balanced such that it con-
sists of 50 percent one class and 50 percent the other, the prior probability
for class 1 and class 2 are the same, each equal to .5. But if a data set is
imbalanced at 99 to 1, the prior probability for class 1 is .99, for class 2 is .01.

The main issue with classifiers on imbalanced data is that they favor the
majority class. The PAM classifier uses prior probabilities in its prediction,
creating a bias towards the majority class when data is imbalanced. SMOTE
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balances data, which nullifies the prior term in PAM, causing the classifier
to improve with SMOTE and slightly outperform LDA, even though the
classifiers are similarly affected by unchanged expected value. Both PAM
and LDA use class proportions in their predictions. LDA uses priors–the
original proportion of each class that makes up a data set–while PAM uses
class-specific sample sizes. This discrepancy could be an explanation for why
LDA’s performance as a classifier is unaffected by SMOTE while PAM has
a slight improvement in performance.

4.2 Variance: Quadratic Discriminant Anal-

ysis and Support Vector Machines

A Support Vector Machine (SVM) is a supervised learning model that con-
structs a boundary between classes and classifies new points according to
their orientation to the boundary. SVMs behave similarly to QDA since
both use boundaries in order to classify points and both operate in more
than one dimension. It is not recommended, therefore, that QDA or SVM
be used with SMOTE because SMOTE causes the variance of the minority
class to shrink.

4.3 Correlation: Discriminant Analysis Meth-

ods, Penalized Logistic Regression, and

Variable Selection

Logistic regression models probability onto a log-linear relationship between
variables, and classifies points based on a probabilistic threshold. Penalized
logistic regression penalizes for the number of variables added to a model
to provide a mechanism against over-fitting, especially when the number of
observations is less than the number of variables. Logistic regression as-
sumes independence among samples [Blagus and Lusa, 2013], meaning that
SMOTE might induce a correlation between observations.
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4.4 Euclidean Distance: k-Nearest Neighbors

in High Dimensions

In section 3.7, we discussed how SMOTE shrinks Euclidean distance between
unclassified samples and synthetic data points. As dimension increases, the
effect of this change in distance compounds, particularly for classifiers that
rely heavily on Euclidean distance. One such classifier is k-NN, the only
classifier to perform well on SMOTE-augmented data in high dimensions.

4.5 Simulation Results

Blagus and Lusa simulated the classifiers given in Table 4.5 and tested them
in high and low dimensions. The green and red colors are used to indicate
whether classifiers performed well or poorly. CO refers to ”cut-off”, or the
classification threshold, which can be adjusted according to whether a re-
searcher wants to make more or less Type I errors. NC means no correction–
the classifiers were placed on imbalanced data where no method was used
to fix the imbalance. An arrow up in the SMOTE columns means SMOTE
improved classifier performance compared to the uncorrected data. An arrow
down in the SMOTE columns means SMOTE worsened classifier performance
compared to the uncorrected data, and roughly equal means the performance
was roughly the same.

There were several occurrences that agreed with the above theoretical re-
alizations. All the uncorrected classifiers assigned most of the test samples
to the majority class. LDA, the classifier based on mean values, changed
negligibly after being applied to SMOTE-augmented data. QDA, the classi-
fier based on variance, was harmed by SMOTE. Similarly, SVM performed
slightly worse after SMOTE. The most promising result is that SMOTE had
a positive effect on k-NN classifiers. The predictive accuracy of the minority
and majority classes on their own were approximately equal.
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Table 4.5: Summary of results from Blagus and Lusa findings
[Blagus and Lusa, 2013]
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Chapter 5

Conclusion

The theoretical properties of Synthetic Minority Oversampling Technique in-
clude unchanging expected value, shrunken variance, introduced correlation
between certain samples, and a smaller Euclidean distance between sam-
ples in some contexts. These theoretical properties are an inherent result of
the SMOTE algorithm. The creation of SMOTE was one of several strides
made in the statistics community in an effort to rectify imbalanced data.
The algorithm is an improvement on standard oversampling by introduc-
ing randomness at select parts of the algorithm in order to try and reflect
the behavior of the data in the natural world. SMOTE is one of the most
popular methods of handling imbalanced data, but its limitations are not
extensively explored. The purpose of this paper was to elucidate SMOTE’s
limitations in order to make better decisions on classifier types applied to
SMOTE-augmented data.
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