TrackMan API to PostgreSQL ETL Pipeline
for Pomona-Pitzer Baseball

Capstone in Data Science

Z, Skigen

November 21, 2025

1 Introduction

1.1 Executive Summary

This project creates an automated Extract—Transform—Load (ETL) pipeline that connects the
Pomona-Pitzer Baseball TrackMan system directly to a PostgreSQL database. The goal is to
move away from the current workflow, manual CSV downloads obtained through FileZilla and
stored in Google Drive, toward a reproducible, cloud-based database that can be accessed and
queried by multiple analysts simultaneously.

The pipeline authenticates with the TrackMan API, extracts raw JSON data, parses it into
structured tables with Python and pandas, and loads it into PostgreSQL using SQLAlchemy.
The centralized database is hosted on Railway, which provides a managed, persistent Post-
greSQL instance accessible from anywhere. Analysts can run queries either locally (e.g.,
through VS Code) or through a Streamlit-based SQL playground that will be deployed on
Streamlit Cloud.

To ensure the database remains continuously up to date, automated ingestion will be scheduled
using PythonAnywhere or GitHub Actions, allowing the ETL script to run nightly without
manual intervention.

Long-term maintainability is supported through a dedicated analyst hub at
sagehenanalytics.sites.pomona.edu, which will provide:

e onboarding materials for new analysts,

e a SQL primer tailored to baseball data,



¢ a data dictionary describing every field and table,
¢ example queries and reproducible workflows, and

e documentation for sustaining and extending the ETL pipeline.

Together, the cloud infrastructure, centralized storage, and documentation ecosystem create
a maintainable, MLB level infrastructure that supports automated reporting, advanced mod-
eling, and long-term continuity for the program.

1.2 Motivation: Current Workflow and Limitations

TrackMan is an optical radar- and camera-based tracking system that measures pitch trajec-
tories, velocities, spin rates, and batted-ball outcomes.

Pomona-Pitzer Baseball currently relies on manual processes to create TrackMan-based scout-
ing reports, visualizations of baseball statistics. After each game, analysts download separate
CSV files containing pitch-level data, many of which contain thousands of rows. These files
must be cleaned, merged, and analyzed individually, with every analyst maintaining their own
local copy of the data. This approach is slow, error-prone, and difficult to reproduce.

TrackMan’s proprietary software provides visual summaries and leaderboards, but it does
not grant analysts direct, flexible access to underlying pitch-level data. As a result, analysts
rely on manual R/Python scripts to generate metrics like pitch usage, release velocity trends,
or command consistency. These analyses are valuable but isolated; different students often
compute similar metrics differently, leading to inconsistent results across reports.

The ETL pipeline addresses these issues by:

1. Centralizing all TrackMan data into a relational PostgreSQL database hosted on Railway.
2. Automating data extraction and cleaning directly from the TrackMan API.

3. Standardizing field names, data types, and relationships between games, players, and
pitches.

4. Providing shared access through SQL, Python, and a Streamlit-based web interface.
5. Supporting long-term onboarding and sustainability through documentation at

sagehenanalytics.sites.pomona.edu, including SQL examples and database-maintenance
guides.



Once the pipeline is deployed, every analyst will query the same database. This eliminates
redundant data wrangling and ensures reproducible, transparent analytics across seasons and
analysts.

2 Data: Structure, Scope, and Organization

2.1 API Acquisition and Data Cleaning

The TrackMan Range API delivers data as deeply nested JSON rather than structured tables.
To make these data usable for analysis, the ETL pipeline implements a complete acquisition,
cleaning, and loading workflow:

1. Authenticate with OAuth2 using a client-credentials flow.

2. Fetch available sessions in 30-day windows to remain within API rate limits
(TrackMan 2025).

3. Request /plays and /balls JSON objects for each session.

4. Flatten all nested JSON using the requests library and pandas. json_normalize ()
(Goel 2020).

5. Standardize fields, including:

e converting keys to snake_case,
e parsing timestamps into UTC,
o enforcing numeric types, and

o removing duplicate or null rows.

6. Load cleaned DataFrames into PostgreSQL using SQLAlchemy (GeeksforGeeks
2021).

This transforms TrackMan’s raw JSON into clean, queryable relational tables suitable for
cloud storage, SQL analysis, and downstream modeling.

A temporary note: only a subset of 2024 sessions currently return complete plays and balls
data. This appears to be a permissions or session-type filtering issue rather than a problem
with the ETL code. T am actively working with TrackMan support to confirm the correct
access scope.



2.2 PostgreSQL Database Creation

Using the official PostgreSQL documentation (PostgreSQL Global Development Group 2025),
I created a dedicated database for the TrackMan pipeline. After cleaning, the ETL writes data
into three core tables: sessions, plays, and balls. These tables reflect the natural hierarchy
of baseball events:

sessions — plate appearances — pitches.

2.2.1 sessions

One row per TrackMan event (game, scrimmage, bullpen).

Includes:

e session ID

e date and time

facility and field information
o team identifiers

o metadata anchoring all downstream tables

2.2.2 plays

One row per plate appearance from the /plays endpoint.

Includes:

e playID (TrackMan’s identifier)

e batter and pitcher identifiers

¢ inning, outs, and count progression
e pitch sequence order

o tagger-behavior and contextual metadata

This table situates each pitch within its in-game context.



2.2.3 balls

One row per pitch from the /balls endpoint.

Includes detailed pitch-tracking metrics:

o release speed, height, side, and angles

e spin rate and spin axis

e induced vertical break, horizontal break, and movement
¢ pitch location and trajectory

e both playId and sessionId keys

This table captures all pitch-level physics and tracking information.

2.3 How the Tables Connect (Joins)

The relational schema is designed so analysts can reconstruct full pitch sequences and game
contexts through standard SQL joins:

e plays.sessionld = sessions.sessionId
links plate appearances to their parent session.

e plays.playID = balls.playld
links each plate appearance to its individual pitches.

e balls.sessionId can also be used to join directly back to sessions if needed.

A typical combined query looks like:

SELECT
p."taggerBehavior_pitchNo" AS pitch_no,
to_timestamp(p."localDateTime", 'MM/DD/YYYY HH24:MI:SS') AS date,
p.'"pitcher_name",
b."pitch_release_relSpeed",
b."pitch_movement_inducedVertBreak"
FROM plays p
JOIN balls b
ON p."playID" = b."playId"
WHERE to_timestamp(p."localDateTime", 'MM/DD/YYYY HH24:MI:SS') >= '2024-01-01"'
ORDER BY date, pitch_no;



This join structure forms the backbone of all downstream analyses. Additional tables—such as
players, normalized pitch_types, or derived scouting-summary tables—can be added later
without altering these core relationships.

2.4 Note on Limited 2024 Data

Only a small subset of 2024 sessions currently return complete pitch-level (balls) and plate-
appearance (plays) data from the TrackMan API. This appears to be related to account
permissions or session-type filtering, rather than any issue with the ETL pipeline itself. I am
actively working with TrackMan support to verify the correct access scope.

Once the access configuration is resolved, the existing ETL infrastructure will ingest the full
historical dataset without requiring architectural changes.

2.5 Cloud Architecture and Deployment Workflow
The pipeline is designed for lightweight, modular cloud deployment so that analysts can access

the system without installing local databases or running ingestion scripts. Three platforms
serve distinct roles in the architecture:

2.5.1 Railway (Managed PostgreSQL Hosting)

Railway hosts the centralized PostgreSQL database and provides:

e a persistent, fully managed PostgreSQL instance,
¢ built-in environment-variable management,
e automatic backups, and

e secure connections from VS Code, Python scripts, or web applications.

This ensures that all analysts query the same live database regardless of device or location.

2.5.2 Streamlit Cloud (Interactive SQL Playground)

Streamlit Cloud will host the team’s web-based SQL playground. The interface will:

¢ allow analysts to run parameterized SQL queries,



o visualize pitch-level or player-level metrics,
o export results for scouting reports, and

e provide a low-barrier, MLB-style interface for interacting with TrackMan data.
This is especially useful for onboarding new analysts who may not yet be comfortable writing

SQL directly.

2.5.3 PythonAnywhere (Optional Scheduled ETL Worker)

To keep the database continuously up to date, PythonAnywhere can execute the ETL script
on a nightly schedule. The automated workflow will:

o authenticate with the TrackMan API,

fetch new sessions, plays, and pitches,
¢ clean and validate the data,
o append new rows to the Railway PostgreSQL instance, and

« make updated data immediately available in Streamlit dashboards.

This removes the need for manual updates and supports a fully automated ingestion pipeline.

3 Analysis

The goal of this project is not to build statistical models or conduct performance analytics, but
to create the infrastructure that enables those tasks. To demonstrate the practical value of the
centralized PostgreSQL database, this section showcases examples of queries and workflows
that were previously time-consuming or impossible under the manual CSV-based system.

Rather than presenting full analytic results, these examples illustrate how the new schema
supports fast, reproducible, and consistent access to pitch-level data.

3.1 Example 1: Accessing All Pitches for a Game

A query that once required manually merging multiple CSVs can now be executed in a single
step:



SELECT =*
FROM balls
WHERE session_id = 'some_game_id';

3.2 Example 2: Linking Pitches to Plate Appearances

The relational structure allows analysts to connect events without manual joins:

SELECT p.pitch_number, p.pitch_type, pa.batter_id, pa.inning
FROM balls p

JOIN plays pa USING (session_id, pitch_number)

LIMIT 50;

3.3 Example 3: Checking Data Completeness

Because ingestion is automated, analysts can quickly verify which sessions have full play and
pitch data:

SELECT session_id,

COUNT(*) AS n_pitches
FROM balls
GROUP BY session_id;

3.4 Example 4: Preparing Data for Scouting Reports

Analysts can build consistent scouting templates directly from the database:

SELECT pitcher_id,
AVG(release_speed) AS avg_velo,
STDDEV (release_speed) AS velo_sd
FROM balls
GROUP BY pitcher_id;

These examples are not intended as full statistical analyses. Instead, they demonstrate that
the new database functions as a reliable foundation for future analytics work, reducing time
spent on data wrangling and ensuring that all analysts work from the same, consistent data.



4 Ethical Considerations

Building a live data pipeline from the TrackMan API introduces important ethical considera-
tions related to data privacy, ownership, contractual compliance, access control, and respon-
sible use. Because the pipeline automates acquisition and centralizes all pitch-level data, it is
essential to ensure that athlete information is handled securely and used only for appropriate
internal purposes.

4.1 Data Ownership and Privacy

TrackMan data belong to Pomona-Pitzer Baseball and its athletes. Although the ETL system
streamlines ingestion, it does not change who controls the data or how the data may be shared.
The database is designed only for internal use within the Pomona-Pitzer Baseball program.

To maintain privacy and comply with institutional expectations:

o API credentials are stored securely through environment variables, never in source code.

o Database access is restricted to verified analysts through password-protected accounts.

o Personally identifiable information (PII), such as student names or ID numbers, is never
included in public exports or external reports; all analysis is conducted using anonymized
player identifiers.

e No raw or processed TrackMan data are publicly distributed or indexed on the open
internet.

These safeguards ensure that the pipeline enhances accessibility without compromising privacy
or exposing information.

4.2 Contractual and Compliance Considerations

TrackMan requires users of its Data API to agree to a formal Terms of Service (ToS). As of
now, | am awaiting a copy of the ToS from our TrackMan representative. Once received, I will
review the document to determine:

o whether data may be shared internally across analysts,

o what forms of storage or distribution are prohibited,

e whether the database must remain private,

e any restrictions on derived metrics or visualization,

e any expectations regarding secure data handling or retention.

Until the ToS is reviewed, the system is intentionally designed to restrict access to authorized
internal users only. This conservative default minimizes the risk of accidental violation of
TrackMan’s contractual requirements.



4.3 Fairness and Responsible Use

Performance data can influence evaluation and playing-time decisions, which makes responsible
interpretation essential. Raw pitch metrics do not capture context such as injury history,
mechanical adjustments, or coaching strategy, and could be misused if treated as objective
rankings.

To promote fair use:

e The database supports development-focused analysis, not public comparison, ranking,
or punitive evaluation.

e Summaries and dashboards are contextualized with coaching input.

e Metrics are interpreted as tools for improvement rather than indicators of athlete value.

e Analysts are encouraged to consider uncertainty, variability, and sampling issues in their
conclusions.

This approach reduces the risk of overinterpreting noisy performance data or unintentionally
creating inequitable evaluation environments.

4.4 Security and Access Control

Centralizing data introduces technical risks that must be mitigated. To ensure secure opera-
tion:

o Access follows least-privilege principles: each analyst receives only the permissions nec-
essary for their role.

o Backups are encrypted, and the database is never left open to public traffic.

¢ API usage logs and ingestion events are monitored for anomalies.

e Credentials are rotated when personnel change.

These safeguards protect both athletes and the institution from data breaches, unauthorized
access, or unintentional exposure.

4.5 Cloud Platform Considerations

The infrastructure supporting this project relies on modern cloud services, including Rail-
way for database hosting, Streamlit Cloud for interactive SQL exploration, and potentially
PythonAnywhere for scheduled ingestion or lightweight API tasks. Each of these services of-
fers different strengths, Railway provides a simple and secure managed PostgreSQL instance,
Streamlit Cloud enables accessible web-based dashboards for analysts, and PythonAnywhere
supports automated Python execution without requiring local resources.

However, using third-party cloud platforms introduces additional ethical responsibilities. To
prevent accidental public exposure of athlete data:
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o all Railway database instances are configured to require password-authenticated con-
nections,

e the Streamlit Cloud application will authenticate users before granting access to any
query functionality, and

¢ no TrackMan-derived data will be written to publicly accessible URLSs, buckets, or web
endpoints.

If PythonAnywhere or similar services are used for scheduled ingestion, credentials will remain
stored in environment variables, not in source code, and logs will not contain sensitive player
information. These platform decisions are made for operational simplicity, but each is config-
ured to preserve the privacy and confidentiality of athlete performance data and to prevent
unauthorized external access.

4.6 Potential Risks With Automation

The pipeline is designed for automated updates, which introduces new ethical and operational
risks:

o If TrackMan mislabels sessions (e.g., bullpens vs. games), automated ingestion may im-
port incorrect or unintended data.

e Errors in the API or incomplete sessions could propagate into the database without being
manually reviewed.

e Analysts could rely on real-time metrics without understanding their limitations or un-
certainty.

To address these risks:

o Automated updates will include logging, flags for new sessions, and procedures for roll-
back.

o Analysts will receive documentation explaining how ingestion works, what assumptions
are made, and how to detect anomalies.

e Any automated reporting tools will emphasize transparency and uncertainty to avoid
overconfidence in raw metrics.

5 Next Steps and Automation

The core ETL pipeline has been implemented and tested locally, but several major components
remain before the system can operate as a complete, production-ready analytics platform. The
following next steps focus on resolving current data-access limitations, building analyst-facing
tools, and establishing long-term maintainability for the program.
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5.1 1. Resolve the Limited 2024 Data Returned by the TrackMan API

The most immediate priority is diagnosing why the TrackMan API is returning only a small
subset of 2024 sessions with complete pitch-level data. I am currently:

e reviewing the TrackMan Data API Terms of Service once it is provided,

o confirming the access scope associated with the Pomona-Pitzer TrackMan account,

o contacting our TrackMan representative to clarify available endpoints and permissions,
and

o testing alternative approaches to querying sessions or session types.

Once access details are confirmed and expanded, the existing ETL code will be able to ingest
the full historical dataset without requiring structural changes.

5.2 2. Build a Front-End Interface for Analysts

A lightweight Streamlit Cloud application will serve as the primary interface for team analysts
who may not want to write SQL or Python. Planned features include:

o an authenticated login page,

e a SQL query sandbox connected to the central Railway database,
¢ built-in visualizations of pitch-level metrics,

o the ability to export data for scouting reports, and

e tools for monitoring data completeness and ingestion logs.

This web app will mirror internal MLB databases and significantly lower the barrier to using
TrackMan data effectively.

5.3 3. Create a Persistent Analyst Hub (sagehenanalytics.sites.pomona.edu)

To ensure long-term sustainability and institutional memory, I will build a documentation hub
hosted at:

sagehenanalytics.sites.pomona.edu

This site will contain:

¢ detailed documentation on how to access, query, and maintain the PostgreSQL database,
¢ a simple introduction to SQL for baseball analytics,

¢ a data dictionary for all tables produced by the ETL pipeline,
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e setup instructions for new analysts,
¢ version-controlled documentation for future modifications, and

o guidance on data privacy, permissions, and operational best practices.

This hub will serve as the permanent home for Sagehen Baseball’s analytics workflows.

5.4 Reproducibility and Analyst Continuity

A core design requirement of this ETL system is that future analysts must be able to rebuild
the full database—whether because permissions change, TrackMan accounts are reset, or the
hosting stack evolves. To support long-term reproducibility:

e« All ETL code is version-controlled in the team’s GitHub repository, including:

— API authentication flow
— session enumeration logic
— JSON flattening

— schema definitions

— loading rules (upserts, PK/FK constraints)

¢« Environment variables document required credentials, so a future analyst only
needs to supply:

— a TrackMan client ID and secret
— the PostgreSQL database URL

— (optionally) a GitHub Actions token if automation is used

¢ The database schema is fully documented at
sagehenanalytics.sites.pomona.edu, including:

— row- and column-level descriptions of every table

entity-relationship diagrams
— sample queries

— ingestion troubleshooting steps
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e« The entire pipeline is rebuildable from a single command, for example:

python run_etl.py --rebuild

This command:

e creates tables if missing
o pulls all available TrackMan sessions

e reconstructs the database from scratch
A future analyst (Z?) would only need:

o TrackMan credentials
e access to the team GitHub repository

e the configuration file specifying schema names and environment variables

Together, these components ensure continuity of the analytics program even after personnel
turnover.

GitHub Actions
Nightly Automation

TrackMan API Python ETL Script Railway PostgreSQL
(Sessions, Plays, Balls) OAuth — JSON — Clean — Load Centralized Database

Streamlit Cloud
SQL Playground / Visuals

This flowchart illustrates the full TrackMan ETL architecture. Data flow proceeds from left
to right: the TrackMan API provides raw pitch- and session-level data, the Python ETL
script authenticates, cleans, and loads the data into Railway’s PostgreSQL database, and
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the centralized database powers analyst-facing tools such as the Streamlit SQL playground.
GitHub Actions runs the ETL automatically, ensuring the system stays up to date without
manual intervention.

5.5 4. Implement Automated Data Refreshes
A major goal of the system is to remove the need for manual data downloads entirely. Scheduled

ingestion will be implemented using GitHub Actions or PythonAnywhere to automatically run
the ETL script on a nightly basis (Sahu 2024). This automated process will:

o authenticate with the TrackMan API,
¢ detect and ingest new sessions,

o append updated play and pitch data,

¢ log ingestion events for debugging, and

e notify analysts if anomalies arise.

Automation is a crucial step: once implemented, the database will remain up to date without
requiring analyst intervention.

5.6 5. Finalize Cloud Deployment Workflow

The last stage of development involves fully transitioning from local testing to secure cloud
deployment:

¢ deploying the ingestion workflow to GitHub Actions or PythonAnywhere for scheduled
execution (Joe Nelson, Steve Chavez 2025),

« hosting the SQL playground and visualization tools on Streamlit Cloud (Streamlit, Inc.
2025),

e ensuring secure connectivity between Streamlit, PythonAnywhere, and Railway,
o rotating credentials and storing them via environment variables, and

o performing multi-user testing to confirm reliability, latency, and usability.

Together, these steps will produce a robust, maintainable, and accessible cloud-based analytics
ecosystem for the Pomona-Pitzer Baseball program (Plotly Technologies Inc. 2025).
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6 Limitations

TrackMan API documentation changes periodically, requiring manual field validation.
Large JSON files can exceed local memory, necessitating batch ingestion.

Historical data from earlier seasons may use inconsistent field names or units.
Operational data (e.g., bullpen sessions, scrimmages) may need manual tagging to dis-
tinguish from official games.

Ll o

Despite these limitations, the project’s modular structure will allow straightforward debugging
and schema expansion as the database scales.

6.1 Incomplete 2024 TrackMan Data (Under Investigation)

During development, I discovered that the TrackMan API was only returning a small subset
of 2024 sessions with complete play- and ball-level data. Most of the pitch-level data currently
available through the /plays and /balls endpoints falls between January 25-28, 2024, even
though the API reports thousands of session identifiers for the year.

This does not appear to be an error in the ETL pipeline itself. Instead, it is likely related to
the scope of the Pomona—-Pitzer TrackMan account, the API’s session-type filtering behavior,
or access permissions defined in the TrackMan Data API Terms of Service. I am actively
working to diagnose the cause by reviewing the ToS, communicating with TrackMan support,
and testing alternative session-querying strategies.

As this investigation continues, the current database reflects the subset of 2024 data that the
API makes available with the present access configuration. Once access details are confirmed
and expanded, the pipeline will be able to ingest the full historical dataset without requiring
structural changes.

7 Conclusion

The TrackMan ETL pipeline will modernize Pomona-Pitzer Baseball’s data operations.
Instead of dozens of fragmented CSVs, analysts will have a unified database accessible through
SQL, Python, or a web app.

Once fully implemented, the system will:

1. Eliminate redundant manual cleaning.
2. Provide live, reproducible access to pitch-level data.
3. Serve as a foundation for advanced models and automated scouting reports.

This infrastructure will not only support the current analytics team but also create a sustain-
able framework for future seasons and future analysts.
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