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Abstract

In modern multiple hypothesis testing problems, often traditional false dis-
covery rate control algorithms require structure that does not align with the
structure of experimental data. This has led to the development of online
false discovery rate control algorithms since 2015. These methods allow for
a potentially infinite number of hypotheses to be tested in sequence. Online
algorithms, including LORD, LOND [4], and SAFFRON [7], have theoreti-
cal guarantees but limited simulation studies. The goal of this paper is to
elaborate on these algorithms and compare the performance of online false
discovery rate control algorithms against the Benjamini-Hochberg algorithm.
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Chapter 1

Introduction

An important feature of modern statistics is hypothesis testing. Hypothesis
testing is a scheme that attempts to determine whether differences in ob-
served data from the hypothesized value are due to random chance or due to
the data originating from an actual effect. A hypothesis test is divided into
two components: the null hypothesis, H0, and the alternate hypothesis, HA.
While there are several types of hypothesis tests, the type of interest to this
paper is constructed as:

Hi =

{
H0 : θ = θ0

HA : θ ̸= θ0

Where θ is the parameter of interest and θ0 is the hypothesized value of
θ imposing that there is no effect.

In order to make decisions for hypothesis tests, either determining that
there is an effect (rejecting the null hypothesis) or determining that the dif-
ference in data is not large enough to declare that there is an effect (failing
to reject the null hypothesis), each hypothesis test has an associated p-value.
This p-value is the probability that, given that the null hypothesis is true,
data this strange or stranger would be generated. The hypothesis tests in this
paper are two-sided. This means that we are concerned with the statistics
being larger or smaller than the observed statistic. When deciding whether
to reject the null hypothesis or not, the p-value is compared to a predeter-
mined cutoff. If the p-value is smaller than that cutoff, the null hypothesis
is rejected.

When conducting hypothesis tests, two critical ideas are type-one and

1



type-two errors. A type-one error occurs when the null hypothesis is rejected
but it is actually true. In essence, this is a false positive. A type-two error
occurs when a statistician fails to reject the null hypothesis, but the alternate
is actually true. In essence, a false negative.

Given these two separate error types, which is more relevant to control?
Controlling the type-one error rate would allow scientists and statisticians to
be confident that only a set proportion of their discoveries over time will be
false, but this may cause a lower proportion of true hypotheses to be discov-
ered. Alternatively, controlling the type-two error rate would allow statis-
ticians to make certain that if an alternate hypothesis was true, it would
be rejected at some predetermined level. Controlling type-two errors, how-
ever, would result in not controlling the proportion of nulls that are falsely
rejected. In most instances of scientific research, hypothesis tests are only
published if the null hypothesis is rejected. Since hypothesis testing was
constructed for science, the decision was made to control type-one errors in
order to ensure the veracity of the scientific literature. A type-one error can
result in incorrect literature and understanding, whereas a type-two error
likely will obscure the truth, but not result in incorrect application.

In modern biomedical research, an important inquiry is the multiple hy-
pothesis testing problem, essentially posing many research questions simul-
taneously. When testing multiple hypotheses, the probability of a type-one
error, which is essentially a false positive, increases. If researchers are inter-
ested in controlling the rate of type-one errors to some constant, generally
0.05, additional controls must be placed on the decision rules for rejecting
hypotheses.

Let us consider a concrete situation in which multiple hypothesis testing
is employed in biomedical research:

A scientist is interested in understanding which genes, if any, play an im-
portant role in the rate of breast cancer in the population. A common tech-
nique is a genome-wide association study (GWAS). Such a procedure involves
collecting a large sample size of individuals, both breast cancer survivors and
individuals without breast cancer. Then, the scientist will sequence the en-
tire genome of all participants in the study to attempt to draw connections
between the presence of genes and breast cancer risk. GWASs can offer in-
credible insight into disease risk, but there are two important considerations
for an example like this:

1. The number of hypotheses are unknown and potentially extremely nu-
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merous. Due to the vast number of potential genes involved with a
given disease, combined with the continued introduction of new partic-
ipants in a GWAS, having all hypotheses known before conducting the
experiment would limit the research potential.

2. Research is being conducted throughout the world simultaneously. With
a disease as prevalent as breast cancer, research labs around the coun-
try are constantly incorporating new data and testing new hypotheses.
Being able to incorporate the research of other labs into new research
generates an enormous advantage in advancing scientific knowledge.

When trying to control the type-one error rate, there are two metrics that
are primarily considered: family-wise error rate (FWER) and false discovery
rate (FDR). The FWER is a measure of the probability of having at least one
type-one error among the tested hypotheses. When controlling the FWER,
the most common method is the Bonferoni Inequality:

For n hypothesis tests H1, H2, ..., Hn, adjust the p-value cutoff as follows:

αj = min{α
n
, 1}

Essentially, the original p-value cutoff gets divided by the number of hy-
potheses tested to generate a new adjusted cutoff which is used as the decision
rule.
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Chapter 2

Online FDR Control
Algorithms

2.1 Online and Offline FDR

To control false positives, the primary metric that this paper focuses on is
FDR. Generally, the FDR is defined as:

FDR = E[FDP] = E[
V

R
] (2.1)

Where V is a random variable that represents the number of type-one
errors and R is a random variable that represents the total number of rejec-
tions.

In order to understand online FDR control, we first must understand the
difference between offline and online FDR.

Offline FDR is what is normally considered when thinking about FDR.
The FDR is associated with a group of hypotheses tested simultaneously
and each multiple hypothesis test is considered independently of all other
multiple hypothesis tests. Additionally, because the hypotheses are decided
before the algorithm is run, the order in which the hypotheses are tested can
be changed to increase power.

In contrast, online FDR considers hypotheses across many research ques-
tions. It controls FDR over a sequence of hypotheses or batches of hypothe-
ses. Just as offline FDR expanded the scope of control from individual hy-
potheses to a single batch of hypotheses, online FDR extends the scope one
step further to control across multiple research questions and projects.
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In essence, offline FDR is considered within a single batch of hypotheses,
whereas online considers a sequence of hypotheses or batches of hypotheses.

2.2 Online FDR Control

This section will go into detail regarding the existing online false discovery
rate control methods. This includes descriptions of LORD, LOND [4], and
SAFFRON[7] and their technical conditions. This section will also include
some proofs regarding the effectiveness of these methods, but will likely only
feature a few of these algorithms.

The advancements in online false discovery rate control can be reflected
generally in the various algorithms that have been described in the literature.
Understanding the function and evolution of these algorithms can give insight
into the effectiveness and reasoning behind this online control.

2.2.1 Why is Online FDR control Useful?

Successful offline control methods, like the Benjamini-Hochberg procedure
[1], exist and can effectively control false discovery rate in single sets of mul-
tiple hypothesis studies. This poses the question of why online methods are
being explored at all. There are several changes to modern research tech-
niques that cause online methods to be necessary. First, modern research has
become increasingly decentralized. With labs across the world researching
similar topics, being able to incorporate different data and hypotheses into a
study without compromising the effectiveness of FDR control methods would
allow for more effective incorporation of work by other researchers. Second,
the increased computing power available to researchers has allowed the study
of high-throughput (HT) data. HT data can be defined as data in which large
amounts of information is gathered simultaneously. The more instances that
data is collected, the more difficult it is to consider offline FDR across its
entirety. Biomedical data are often expansive, high-dimensional, and very
fast to collect. Researchers are attempting to interpret a fire hose of data.
Attempting to dissect and categorize HT data is extremely difficult. With
offline control methods, a testing period needs to be rigorously defined be-
cause all hypotheses must be tested at once and no more can be added. At
some point, a scientist must decide when they have enough data and ignore
future data for the hypotheses in question. Online control methods can be an

5



alternative to having to draw distinct beginnings and ends to testing periods.

2.2.2 LORD and LOND

LORD (Levels based On Recent Discoveries) and LOND (Levels based On
Number of Discoveries) are the first attempts by statisticians to control online
false FDR. They appeared in Adel Javanmard and Andrea Montanari’s 2015
paper [4]. These two algorithms show the fundamental methodology that is
used in many subsequent attempts to control FDR. Because of its impact,
let’s breakdown the LOND and LORD algorithms in detail to understand
the approach:

Given a set of hypotheses H1, H2, ..., choose a desired significance level α
and a non-negative sequence (βi)

∞
i=1 such that

∑∞
i=1 βi = α The significance

threshold for pi, the ith p-value is:

αi = βi(D(i− 1) + 1)

Where D(n) is defined as the number of significant results from the first n
hypotheses tested.

When employing this algorithm, we get the following:

Theorem 2.1. If the p-values for the hypotheses are independent, the LOND
procedure controls FDR at a level less than or equal to α

The goal of the proof for the LOND algorithm is to show that, if the
procedure is followed, FDR(n) ≤ α for all n ≥ 1 [4]. That is to say, the FDR
over the first n hypothesis tests will be controlled at the nominal cutoff.
Before elaborating on the proof, a few functions must be defined. V (n) is
a function that outputs the number of false rejections through n hypothesis
tests. R(n) is a function that outputs the total number of rejections through
n hypothesis tests. FDR is defined as:

FDR(n) = E

[
V (n)

Max{R(n), 1}

]
FDR(n) = E

[ n∑
j=1

Fj

Max{R(n), 1}

]
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We can multiply by
αj

αj
in order to incorporate the adjusted cutoff:

FDR(n) = E

[ n∑
j=1

Fj

αj

· αj

Max{R(n), 1}

]
We now need to show that each of these components of the product

multiply to be less than βj. First let’s look at
αj

Max{R(n),1} :
We know that

Max{R(n), 1} ≤ Max{R(j), 1}

Since the number of total rejections, R(x) is monotonically increasing.
By construction of αj:

αj

Max{R(n), 1}
=

βj(R(j − 1) + 1)

Max{R(n), 1}
≤ βj

For the second half of the product,
Fj

αj
, consider the condition placed upon

the hypotheses:

Pθj=0(Tj = 1|R(j − 1)) ≤ E[αj|R(j − 1)]

This condition is satisfied by the independence of p-values. Consider:

E

[
Fj

αj

]
= E

[
E

[
Fj

αj

|R(j − 1)

]]
≤ E[1] = 1

Thus,

FDR(n) ≤
∞∑
j=1

βj = α

[4]
Because FDR is an unobservable value, proofs regarding the long-run

behavior of the false discovery proportion. By bounding the infinite sequence
β so that its sum equals α, the construction of αi allows for guarantees
that the FDR is controlled for that hypothesis together with each previous
hypothesis at the nominal cutoff.

In practice, the way that LOND and LORD work is to leverage a bounded
infinite series. The control method needs to hold for a potentially infinite
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number of hypotheses. In order to achieve FDR control with potentially in-
finite hypotheses, it balances a monotonically decreasing sequence βi with
an increasing factor based on the number of rejections thus far in the test-
ing sequence. As the number of hypotheses tested increases, βi decreases
and D(i − 1) increases. This prevents the sequence of critical values from
approaching zero or increasing to infinity except in very specific cases (for
instance, if all of the hypotheses tested fail to reject the null).

Next, let’s examine LORD. Rather than focusing on the number of pre-
vious rejections like LOND, LORD only considers how recently a hypothesis
has been rejected[4]. The cutoff for LORD is determined as:

Given a set of hypotheses H1, H2, ..., choose a desired significance level α
and a non-negative sequence (βi)

∞
i=1 such that

∑∞
i=1 βi = α

The significance threshold for pi, the ith p-value is equal to:

αi = βi

Until the first discovery occurs. After this first discovery, the new adjusted
cutoff becomes:

αi = βi−τi

Where τi is defined as:

τi := max{l < i|Hl Is Rejected}

Theorem 2.2. If the p-values for the hypotheses are independent, the LORD
procedure controls FDR at a level less than or equal to α[4]

The intuition from this proof is a bit more complex than LOND because
LORD relies on random indicator functions. We have this string of inequal-
ities that result in the theoretical result. Rather than using all of the past
rejections to inform the cutoff, LORD only uses how recently a hypothesis is
rejected.

The cutoff is adjusted down the infinite sequence β as hypotheses are
failed to be rejected. Each time a hypothesis is rejected, the cutoff is reset
to β1. The process continues as the sequence of hypotheses are inputted into
the control algorithm.
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2.2.3 SAFFRON

SAFFRON is an adaptation based on the original LOND and LORD algo-
rithms [7]. The algorithm expand upon the original structure of the LORD
and LOND algorithms, while adding adaptive components. The following is
the SAFFRON algorithm:

SAFFRON

1. Given a target FDR level α, the user first picks a constant λ ∈ (0, 1),
an initial wealth W0 < (1−λ)α, and a positive non-increasing sequence
{γj}∞1 summing to one.

2. We then need to determine which p-values are candidates. Define the
indicator function Ct := 1(Pt ≤ λ), and τj be the time of the j-th
rejection. We also must define the number of candidates after the j-th
rejection as Cj+(t) :=

∑t−1
i=τj+1 Ci

3. SAFFRON first allocates α1 = min{γ1W0, λ}. Then at time t = 2, 3, ...
it allocates as follows:

αt := min(λ, ᾱt)

where

ᾱt := W0γt−C0+ + ((1− λ)α−W0)γt−τ1−C1+ +
∑
j≥2

(1− λ)αγt−τj−Cj+

This algorithm uses an infinite sequence that forms a bounded series with
a few additions. λ is a maximum value to test p-values. This means that
regardless of what the αt value for a hypothesis is, SAFFRON will not even
consider it if the p-value is less than λ. Since SAFFRON is able to discard
certain hypotheses using λ, the algorithm sees fewer null hypotheses. This
means that the cutoff does not suffer as much from failures to reject and can
reject more true hypotheses. This results in higher potential power [7].
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Chapter 3

Offline Control Methods

3.1 Prominent Offline FDR Control Algorithms

In order to control false discovery rate, there are several accepted offline meth-
ods, however far-and-away the most popular is the Benjamini-Hochberg[1]
(BH) class of algorithms. BH employs the offline assumptions when con-
trolling false discovery rate, which require finite and known hypotheses and
p-values.

As a reminder, the quantity that we want to control is the false discovery
rate, which is defined as:

FDR = E[FDP] = E

[
V

R

]
(3.1)

Where V is a random variable that represents the number of type-one
errors and R is a random variable that represents the total number of rejec-
tions.

An important concept when understanding the effectiveness of FDR con-
trol algorithms is the difference between nominal FDR control rate and ef-
fective FDR control rate. While each algorithm has the theoretical result of
controlling FDR at or below the chosen cutoff α, the reality can be different.
The nominal control rate is equal to the chosen cutoff α. The effective control
rate is the actual FDR calculated from simulation studies. Large differences
between these two values can indicate that technical conditions are not being
held or the algorithm is being employed in an inappropriate situation.

10



3.1.1 Benjamini-Hochberg Algorithm

To gain an understanding of the most commonly used FDR control method,
let’s highlight the procedure of the Benjamini-Hochberg algorithm. The
Benjamini-Hochberg algorithm is as follows[1]:

Benjamini-Hochberg Algorithm

1. Given a finite set of hypotheses H1, H2, ..., Hn, generate p1, p2, ..., pn,
the corresponding independent p-values.

2. Reorder the p-values from smallest to largest, creating the new set
{p′i}i1.

3. Generate αi, the adjusted p-value cut-offs for each p′i using αi =
liαm .

Where li is the rank of the ith p-value, m is the total number of p-
values, and α is the nominal false discovery rate level.

4. Find the largest p-value that is less than it’s adjusted cut-off. Reject
all hypotheses with p-values smaller than this maximal value and fail
to reject all p-values larger than it.

Using the BH procedure, the false discovery rate can be controlled at a
specified level [1]. It is important to remember that the Benjamini-Hochberg
procedure and the online control methods assume the independence of p-
values, which is often violated in RNASeq data.

3.1.2 Why Not Extend Offline Algorithms Directly

The existence and prominence of the BH algorithm begs the question: why
can we not just apply the BH algorithm multiple times as additional hy-
potheses are put forward. In order to understand why this method does not
maintain the control of normal BH, let’s dig a bit deeper into what the false
discovery rate is.

Consider a situation where we are testing 2n hypotheses. The false dis-
covery rate, in the context of actual experiments, is defined as:

FDR = E[Q] = E

[
V

R

]
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Where Q is the false discovery proportion, V is a random variable rep-
resenting the number of false rejections from the 2n hypotheses, and R is
a random variable representing the total number of rejections from the 2n
hypotheses.

Using the BH procedure ensures that E[Q] ≤ α where α is the nominal
FDR control rate. Let’s now consider a slightly altered situation in which we
now consider two separate batches with n hypotheses. Let Q′ be the false
discovery proportion for both batches counted together defined as

Q′ =
V1 + V2

R1 +R2

Where Vi is the number of false rejections for batch i and Ri is the total
number of rejections for batch i.

Let’s examine the FDR of both batches together.

FDR = E[Q′] = E[
V1 + V2

R1 +R2

]

FDR = E[Q′] = E[
V1

R1 +R2

] + E[
V2

R1 +R2

] ≤ E[
V1

R1

] + E[
V2

R2

] ≤ 2α

Once both batches are considered, Q′ is only controlled beneath 2α. This
does not mean that the naively combined BH algorithms will always result
in the higher FDR control rate. The more replicates that are present when
conducting the experiment, the more that this effect can be diluted. However,
the theoretical control afforded by the BH procedure are no longer guaranteed
[9].

Considering long-term research by individuals and labs, this problem also
applies. When labs or individuals ask multiple research questions over time,
they are applying the BH algorithm in multiple batches. If we consider the
FDR over all experiments over time, the FDR control offered by BH is lost.
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Chapter 4

Simulation Study

4.1 Simulation Purpose

In actual experiments, FDR and power are immeasurable metrics. If we
possessed knowledge of which hypotheses were truly null or non-null, there
would be no need for any statistical tests. Thus, in order to understand the
performance of online and offline FDR control algorithms, simulation studies
are necessary. Using simulated data based off of estimated parameters from
real data allows for the knowledge of which hypotheses are null and which
are non-null. This allows for the direct calculation of both FDR and power.

One modern biomedical research technique that online FDR control al-
gorithms are particularly well-suited for is the collection of RNASeq data.
The collection of RNASeq data involves exposing a cell to control and sample
conditions (such as a change in temperature, the presence of a drug, a lack
of nutrients, etc.) and measuring how much mRNA is expressed from each
gene of interest in the various conditions. mRNA is the mechanism by which
the gene is expressed, so the more mRNA is present in the cell, the more
the gene is being activated. Understanding how different genes are expressed
under different conditions can give insights into gene function and potential
drug efficacy.

RNASeq data is often modeled as negative binomial data, parameterized
with µ and σ2. The simulations carried out for this paper simulated RNASeq
data using mean and dispersion estimates generated from Pickrell et al [6].
Using these parameter estimates of the negative binomial model, we gain the
ability to generate data that comes from the same population that Pickrell
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was examining. In the paper, Pickrell et al sought to map of the human
transcriptional landscape. Essentially, which of the approximately 20,000
human genes are being activated in different situations. Thus, the simulation
for this paper will specifically apply to human RNASeq data, although it is
likely to be generalizable.

For all comparisons made in this paper, the offline FDR control method
employed will be Benjamini-Hochberg and the online FDR control method
will be SAFFRON. The simulation procedure will be as follows:

Simulation Procedure

1. Generate batch Bi of 1000 hypothesis tests, with a proportion of true
hypotheses equal to π

2. Use differential expression analysis via DESeq2 to associate each hy-
pothesis in Bi with a p-value

3. Generate offline adjusted p-values for Bi using BH on the p-values of
Bi

4. Generate online adjusted p-values for Bi using SAFFRON on all tests
in batches Bj such that j ≤ i

5. Generate a list of rejections for both the offline and online methods

6. Compute the FDR and power that result from each FDR control
method

7. Repeat this procedure for 1 ≤ i ≤ r

This algorithm seeks to duplicate how offline and online FDR control
methods would be employed in scientific inquiry. Each batch Bi is analo-
gous to a current research question that is being explored. For example,
B1 could be examining the effect of higher temperatures on gene expression
and B2 could be examining the effects of a more acidic environment. Ad-
ditionally, having 1000 hypotheses for each batch attempts to replicate the
high-throughput data that is characteristic to RNASeq data. In practice, BH
is applied to individual batches with no consideration for past results. This
is why the offline FDR control method only considers the p-values of Bi,
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Figure 4.1: FDR over 15 Runs of
20 Batches with No Control Algo-
rithm

Figure 4.2: Power over 15 Runs of
20 Batches with No Control Algo-
rithm

whereas online FDR control methods, by their sequential nature, consider
all previously tested hypotheses in order. SAFFRON is run on all batches
before the current batch before attempting to control Bi.

4.2 Baseline Comparison

The first simulation of interest is a direct comparison of of the offline and
online control methods given typical RNASeq conditions. The proportion
of non-null hypotheses, π, will equal 0.1. This low proportion of non-null
hypotheses is typical for exploratory studies that RNASeq data is usually
employed in. The total number of runs, r, is set to 30 to try and understand
the characteristics of BH and SAFFRON over many experiments, as the
benefits of online FDR control are seen over the course of many research
questions.

4.2.1 No FDR Control

Before exploring the results of the two FDR control methods, let’s quickly
examine the results of the simulation when no FDR controls are put into
place. We can see in figure 4.1 that the FDR over thirty batches has a mean of
just over 0.35. This means that thirty five percent of the rejections were false.
Such a result is terrible for science. We are seeing seven times more type-
one errors than the nominal cutoff. This demonstrates the need to employ
FDR control algorithms, especially when testing this many hypotheses. A
lack of FDR control does result in high power, as seen in figure 4.2. The
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Figure 4.3: FDR over 15 Runs of
20 Batches with BH Control Algo-
rithm

Figure 4.4: Power over 15 Runs of
20 Batches with BH Control Algo-
rithm

mean power across the thirty batches is just over 0.85. So we are rejecting
eighty five percent of true hypotheses. This is to be expected. Failing to
put in FDR controls means that more hypotheses will be rejected, both null
and non-null, which implies that not controlling FDR will result in a higher
power than controlling FDR.

4.2.2 Offline FDR Control

Let’s now apply the BH algorithm separately to each of the thirty batches
and examine how the FDR and power behaves.

The BH algorithm works well in controlling FDR across the thirty batches.
As seen in figure 4.3, the mean FDR is about 0.08. Thus, only about eight
percent of rejections are false. However, the variance between batches is
large. A reasonable portion of batches have an FDR of at least twelve per-
cent, with one above sixteen percent. The power is slightly lower than not
employing an FDR control method, with a mean of approximately 0.75, but
this is still extremely good for such a low proportion of non-nulls.

4.2.3 Online FDR Control

Finally, let’s examine the FDR and power when running the SAFFRON algo-
rithm. The SAFFRON algorithm seems to perform well in these conditions.
The mean FDR across the thirty batches is about 0.075 as seen in figure 4.5.
The variance of the FDR, however, is much lower as more batches are tested.
The power is a bit lower than the offline control methods, with a mean of
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Figure 4.5: FDR over 15 Runs of
20 Batches with SAFFRON Con-
trol Algorithm

Figure 4.6: Power over 15 Runs of
20 Batches with SAFFRON Con-
trol Algorithm

0.72, but this difference is not major compared to the reduction in variance
of the FDR.

4.3 Domain Expertise Comparison

One of the properties of online FDR control methods that makes them so
attractive is the ability to leverage domain expertise more effectively. When
employing BH, domain expertise can only be leveraged in the selection of
hypotheses. The online methods though can reorder the way that hypotheses
are tested. In the next simulation, the proportion of non-null hypotheses, π,
will equal 0.5 for the first nine batches, after which π will switch to 0.1. This
is designed to simulate a scientist’s ability to first test hypotheses that they
are more confident in. This allows the online control algorithm to leverage
this higher initial true rejection rate to perform better under the later, worse
conditions. The total number of runs, r, is set to 100 to try and understand
the characteristics of BH and SAFFRON over many experiments and how
the implementation of domain expertise can affect FDR and power.

4.3.1 No FDR Control

As before, let’s understand the performance of FDR and power when no
control algorithms are implemented under these conditions. We can see in
figure 4.7 that the proportion of non-null hypotheses has a massive impact
on the uncontrolled FDR. The FDR for the four batches with π = 0.5 sits
at just above 0.05, the cutoff. However, once the proportion of non-nulls
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Figure 4.7: FDR over 8 Runs with
50 Batches with No Control Algo-
rithm

Figure 4.8: Power over 8 Runs
with 50 with No Control Algo-
rithm

Figure 4.9: FDR over 8 Runs with
50 Batches with BH Control Algo-
rithm

Figure 4.10: Power over 8 Runs
with 50 Batches with BH Control
Algorithm

decreases back to 0.1, we see similarly poor performance as we did when
π = 0.1 for all batches. FDR control methods are still necessary when some
domain expertise is put into place. A lack of FDR control once again results
in high power, as seen in figure 4.8. The mean power across the thirty batches
is about 0.875.

4.3.2 Offline FDR Control

Let’s now apply the BH algorithm to each of the thirty batches individually
and examine how the FDR and power behaves.

As seen in figure 4.9, the BH algorithm has similar structure to the un-
controlled case. The first nine batches have low variance and low FDR. After
π decreases back to 0.1, the performance looks similar to the original condi-
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Figure 4.11: FDR over 8 Runs
with 50 Batches with SAFFRON
Control Algorithm

Figure 4.12: Power over 8 Runs
with 50 Batches with SAFFRON
Control Algorithm

tions. This is exactly the behavior we would expect given that each of the
batches are considered independently of previous batches. The variance of
the FDR is still high once the proportion of non-nulls increases back to the
original values. The power is similar to the non-domain expertise example.

4.3.3 Online FDR Control

Finally, let’s examine the FDR and power when running the SAFFRON
algorithm. SAFFRON displays fascinating structure when domain expertise
is implemented. Rather than a stark gap between the low and high proportion
of non-nulls as seen in the offline and no control methods, the FDR behavior
appears to be monotonic as seen in figure 4.11. SAFFRON allows scientists
to leverage the domain knowledge beyond the experiments that the domain
expertise applies to. Even though the FDR is increasing throughout the
100 batches, the FDR performs better than offline mean in every instance.
Similarly in figure 4.12, the power begins much higher than BH, and although
it decreases, the power of each batch remains above the maximum power
when using offline FDR control methods. This domain expertise shows the
true potential of the online FDR control algorithms. Domain knowledge in
a few experiments improves the performance of all other experiments.
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Chapter 5

Conclusion

In the conclusion, I want to focus on what this really means. How worried
should we be about the false discovery rate of multiple hypothesis tests?
Additionally, should online control methods be explored further, and if so,
how would it look to implement them into modern biomedical research? This
subject is far-reaching and important, where should we go from here?

It is important to remember that FDR is an expected value of the false
discovery proportion. This means that for each individual research question,
the FDR is not guaranteed to be below the nominal control rate. This means
that one of the primary statistics of interest should be the variance of the
false discovery proportion. Offline control algorithms have been a staple of
research since Benjamini and Hochberg released their algorithm in 1996. This
was a landmark paper in statistics and certainly greatly contributed to the
scientific process. And while the BH procedure works well, understanding
the current status of data analysis can lead to opportunities to develop more
specialized algorithms. What makes FDR control algorithms powerful is the
ability to leverage the structure and generation of the data. Online FDR
control is much more specific than Benjamini-Hochberg. In situations where
there is a large amount of domain expertise, there is a large amount of HT
data, or there is research being done by many labs throughout the world,
online FDR control can be implemented to take advantage of this structure.

While online control algorithms are still being developed, they pose a
new paradigm that could aid in new, HT research that is being conducted in
many fields around the world. If the goal of statistics is to clarify truths from
data, the avoidance of type-one errors should be a top priority. Online FDR
control offers new tools to scientists and statisticians to take advantage of
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existing structure within data and have more flexibility in hypothesis choice.
More effective and specialized tools can result in better science which will
result in a better world and I believe that online hypothesis testing can be a
small part of that better world.
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Appendix A

Simulation Code

knitr::opts_chunk$set(echo = TRUE)

# Load libraries

library(DESeq2)

library(onlineFDR)

library(seqgendiff)

library(compcodeR)

library(tidyverse)

my_alpha <- 0.05

n_samples <- 15

n_batches <- 10

n_in_batch <- 10000

pi_de <- 0.1

generateData <- function(numHyp, diffRat, repID, nSamples = n_samples){

# numHyp: Number of hypotheses tested for this dataset

# diffExp: Number of hypotheses that are truly differentially expressed in the treatment condition

# nSamples: Number of each experimental condition (control and treatment)

#Create a vector that describes experimental conditions. In this case, control and treatment

condVec <- c(rep("control", nSamples), rep("treatment", nSamples))
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# Set seed for simulated data reproducability. Only uncomment if running final analysis that will be featured in thesis paper or presentation

#set.seed(i)

# Create synthObject, an object that contains the count matrix, differential expression matrix, and other info about the synthetic data. This simulated data is based on the mean and variance estimates from data in Pickrell et al (2010) and Cheung et al (2010). For more detail regarding the data simulation process, review Soneson and Delorenzi (2013).

# Important notes about the inputs of this function: fraction.upregulated represents what fraction of the differentially expressed genes are upregulated (treatment mean count is higher than sample mean count for that gene). Keeping this close to a half is important. At the extremes of up- or downregulation both offline and online control mechanisms begin to break due to weirdness of DEA. Luckily, this seems to line up rather effectively with the reality of most treatment conditions. Additionally, in real world circumstances a significant tilt in regulation will be able to be seen in the data, and thus can be expected before any analysis is done.

synthObject <- generateSyntheticData(dataset = paste0("sim", repID, "-", diffRat),

n.vars = numHyp,

samples.per.cond = nSamples,

n.diffexp = numHyp*diffRat,

repl.id = repID,

seqdepth = 1e7,

fraction.upregulated = 0.5,

between.group.diffdisp = FALSE,

filter.threshold.total = 1,

filter.threshold.mediancpm = 0,

fraction.non.overdispersed = 0,

output.file = "OutputTestSynth.rds")

# Add column headers with the experimental conditions so that the differential expression understands which columns are control and treatment.

colnames(synthObject@count.matrix) <- condVec

# Create a vector that contains which genes are differentially expressed by index. 1 if differentially expressed and 0 if not.

# diffExpressionDf <- synthObject@variable.annotations %>%

# mutate(gene_id = paste0("g", row_number()))

# Save the generated count matrix as synthData

# synthData <- synthObject@count.matrix

# rownames(synthData) <- paste0("g",seq(numHyp))

# Return a list that contains the count matrix, sample conditions, and differential expression vector

synthObject@variable.annotations['Row.names'] <- paste0('g',seq(from=1,to=length(synthObject@variable.annotations$differential.expression)))

return(synthObject)

}

DESeqPipeline <- function(countMatrix, conditions) {

colData <- data.frame(condition = conditions) %>%
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mutate(condition = as.factor(condition))

ddsFromMatrix <- DESeqDataSetFromMatrix(countData = countMatrix,

colData = colData,

design = ~ condition)

dds <- DESeq(ddsFromMatrix)

res <- results(dds)

#left_join

resData <- merge(as.data.frame(res), as.data.frame(counts(dds, normalized = TRUE)),

by = 'row.names',

sort = FALSE)

resData

}

uncontrolledFDR <- function(unconDf, cutoff=0.05){

n_positives <- sum(unconDf$pvalue < cutoff, na.rm = TRUE)

n_true_positives <- sum((unconDf$pvalue < cutoff) & (unconDf$differential.expression==1), na.rm=TRUE)

n_false_positives <- sum((unconDf$pvalue < cutoff) & (unconDf$differential.expression==0), na.rm=TRUE)

fdr <- n_false_positives/n_positives

power <- n_true_positives/sum(unconDf$differential.expression == 1)

tibble(n_positives = n_positives,

n_true_positives = n_true_positives,

n_false_positives = n_false_positives,

fdr = fdr,

power = power)

}

control_offlineFDR <- function(unconDf, cutoff = 0.05, .method = "BH"){

#pValueVec is the vector of raw p-values

#diffExpVec is the differential expression vector for each corresponding p-value

#cutoff is the nominal cutoff

adjP <- p.adjust(unconDf$pvalue, method = .method)

n_positives <- sum(adjP < cutoff, na.rm = TRUE)

n_true_positives <- sum((adjP < cutoff) & (unconDf$differential.expression==1), na.rm=TRUE)

n_false_positives <- sum((adjP < cutoff) & (unconDf$differential.expression==0), na.rm=TRUE)
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fdr <- n_false_positives/n_positives

power <- n_true_positives/sum(unconDf$differential.expression == 1)

tibble(n_positives = n_positives,

n_true_positives = n_true_positives,

n_false_positives = n_false_positives,

fdr = fdr,

power = power)

}

control_onlineFDR <- function(unconDf, cutoff=0.05){

#This is set up very similarly the offline control function. But SAFFRON generates cutoffs rather than adjusted p-values, slightly altering the boolean checks

unconDf <- drop_na(unconDf)

saffron_res <- SAFFRON(unconDf, alpha=cutoff)

n_positives <- sum(saffron_res$R)

n_true_positives <- sum(saffron_res$R & unconDf$differential.expression==1, na.rm = TRUE)

n_false_positives <- sum(saffron_res$R & unconDf$differential.expression==0, na.rm = TRUE)

fdr <- n_false_positives/n_positives

power <- n_true_positives/sum(unconDf$differential.expression==1)

tibble(n_positives = n_positives,

n_true_positives = n_true_positives,

n_false_positives = n_false_positives,

fdr = fdr,

power = power)

}

```

```{r generate_results}

generate_results <- function(.numHyp, .diffRat, .repID){

mainDf <- data.frame()

#P-Value Generation

dataDf <- data.frame()

numHyp <- .numHyp

diffRat <- .diffRat

repID <- .repID
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dataObj <- generateData(numHyp, diffRat, repID)

deRes <- DESeqPipeline(dataObj@count.matrix, dataObj@sample.annotations$condition)

mainDf <- merge(dataObj@variable.annotations, deRes, by='Row.names')

return(mainDf)

}

#This is the block of code that needs to be run to actually conduct the analysis

repID <- 14286126841

aggRes <- list()

for (j in 1:15){

de_res <- list()

noFDR <- c()

noPower <- c()

onlineFDR <- c()

onlinePower <- c()

offlineFDR <- c()

offlinePower <- c()

finalRes <- data.frame()

#These parameters are extremely important. runs is the number of times we simulate, numHyp is the number of hypotheses per family, numDiff is the number of those hypotheses that are differentially expressed, and numFam is the number of families per simulation (essentially, the number of times that we append data and run control again.)

runs <- 20

numHyp <- 1000

diffRat <- 0.1

#Each time we run generate_results(), we get a data frame with all of the relevant information. Across the runs, we append the newly generated data frame, currentRun, to sumDf.

for(i in 1:runs){

de_res[[i]] <- generate_results(numHyp, diffRat, repID) %>%

mutate(batch = i)

repID <- repID + i

}

finalRes <- dplyr::bind_rows(de_res) %>%
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select(pvalue, differential.expression, batch, Row.names)

for (i in 1:runs){

noRes <- uncontrolledFDR(filter(finalRes, batch==i))

offRes <- control_offlineFDR(filter(finalRes, batch==i))

onRes <- control_onlineFDR(filter(finalRes, batch<=i))

noFDR <- c(noFDR, noRes$fdr)

noPower <- c(noPower, noRes$power)

offlineFDR <- c(offlineFDR, offRes$fdr)

offlinePower <- c(offlinePower, offRes$power)

onlineFDR <- c(onlineFDR, onRes$fdr)

onlinePower <- c(onlinePower, onRes$power)

}

aggRes[j] <- list(data.frame(noFDR, noPower, offlineFDR, offlinePower, onlineFDR, onlinePower))

}

save(finalRes, file=paste0('finalRes1agg')

data.frame(noFDR) %>%

ggplot(aes(x=seq(from=1,to=length(noFDR),by=1), y = noFDR)) +

geom_point() +

geom_hline(yintercept=mean(noFDR))

data.frame(noPower) %>%

ggplot(aes(x=seq(from=1,to=length(noPower),by=1), y = noPower)) +

geom_point() +

geom_hline(yintercept=mean(noPower))

data.frame(offlineFDR) %>%

ggplot(aes(x=seq(from=1,to=length(offlineFDR),by=1), y = offlineFDR)) +

geom_point() +

geom_hline(yintercept=mean(offlineFDR))

data.frame(offlinePower) %>%

ggplot(aes(x=seq(from=1,to=length(offlinePower),by=1), y = offlinePower)) +

geom_point() +
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geom_hline(yintercept=mean(offlinePower))

data.frame(onlineFDR) %>%

ggplot(aes(x=seq(from=1,to=length(onlineFDR),by=1), y = onlineFDR)) +

geom_point() +

geom_hline(yintercept=mean(onlineFDR))

data.frame(onlinePower) %>%

ggplot(aes(x=seq(from=1,to=length(onlinePower),by=1), y = onlinePower)) +

geom_point() +

geom_hline(yintercept=mean(onlinePower))

#This is the block of code that needs to be run to actually conduct the analysis

de_res <- list()

noFDR <- c()

noPower <- c()

onlineFDR <- c()

onlinePower <- c()

offlineFDR <- c()

offlinePower <- c()

#These parameters are extremely important. runs is the number of times we simulate, numHyp is the number of hypotheses per family, numDiff is the number of those hypotheses that are differentially expressed, and numFam is the number of families per simulation (essentially, the number of times that we append data and run control again.)

runs <- 30

numHyp <- 1000

diffRat <- 0.5

repID <- 032020221139

#Each time we run generate_results(), we get a data frame with all of the relevant information. Across the runs, we append the newly generated data frame, currentRun, to sumDf.

for(i in 1:runs){

de_res[[i]] <- generate_results(numHyp, diffRat, repID) %>%

mutate(batch = i)

repID <- repID + i

}

finalRes <- dplyr::bind_rows(de_res) %>%

select(pvalue, differential.expression, batch, Row.names)
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for (i in 1:runs){

noRes <- uncontrolledFDR(filter(finalRes, batch==i))

offRes <- control_offlineFDR(filter(finalRes, batch==i))

onRes <- control_onlineFDR(filter(finalRes, batch<=i))

noFDR <- c(noFDR, noRes$fdr)

noPower <- c(noPower, noRes$power)

offlineFDR <- c(offlineFDR, offRes$fdr)

offlinePower <- c(offlinePower, offRes$power)

onlineFDR <- c(onlineFDR, onRes$fdr)

onlinePower <- c(onlinePower, onRes$power)

}

save(finalRes, file=paste0('finalRes2')

data.frame(noFDR) %>%

ggplot(aes(x=seq(from=1,to=length(noFDR),by=1), y = noFDR)) +

geom_point() +

geom_hline(yintercept=mean(noFDR))

data.frame(noPower) %>%

ggplot(aes(x=seq(from=1,to=length(noPower),by=1), y = noPower)) +

geom_point() +

geom_hline(yintercept=mean(noPower))

data.frame(offlineFDR) %>%

ggplot(aes(x=seq(from=1,to=length(offlineFDR),by=1), y = offlineFDR)) +

geom_point() +

geom_hline(yintercept=mean(offlineFDR))

data.frame(offlinePower) %>%

ggplot(aes(x=seq(from=1,to=length(offlinePower),by=1), y = offlinePower)) +

geom_point() +

geom_hline(yintercept=mean(offlinePower))
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data.frame(onlineFDR) %>%

ggplot(aes(x=seq(from=1,to=length(onlineFDR),by=1), y = onlineFDR)) +

geom_point() +

geom_hline(yintercept=mean(onlineFDR))

data.frame(onlinePower) %>%

ggplot(aes(x=seq(from=1,to=length(onlinePower),by=1), y = onlinePower)) +

geom_point() +

geom_hline(yintercept=mean(onlinePower))

#This is the block of code that needs to be run to actually conduct the analysis

aggRes3 <- list()

repID <- 032020221144

for(j in 1:8){

de_res <- list()

noFDR <- c()

noPower <- c()

onlineFDR <- c()

onlinePower <- c()

offlineFDR <- c()

offlinePower <- c()

#These parameters are extremely important. runs is the number of times we simulate, numHyp is the number of hypotheses per family, numDiff is the number of those hypotheses that are differentially expressed, and numFam is the number of families per simulation (essentially, the number of times that we append data and run control again.)

runs <- 50

numHyp <- 1000

diffRat <- 0.5

#Each time we run generate_results(), we get a data frame with all of the relevant information. Across the runs, we append the newly generated data frame, currentRun, to sumDf.

for(i in 1:runs){

if(i < 10){

de_res[[i]] <- generate_results(numHyp, diffRat, repID) %>%

mutate(batch = i)

}

else{

de_res[[i]] <- generate_results(numHyp, 0.1, repID) %>%

mutate(batch = i)
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}

repID <- repID + i

}

finalRes <- dplyr::bind_rows(de_res) %>%

select(pvalue, differential.expression, batch, Row.names)

for (i in 1:runs){

noRes <- uncontrolledFDR(filter(finalRes, batch==i))

offRes <- control_offlineFDR(filter(finalRes, batch==i))

onRes <- control_onlineFDR(filter(finalRes, batch<=i))

noFDR <- c(noFDR, noRes$fdr)

noPower <- c(noPower, noRes$power)

offlineFDR <- c(offlineFDR, offRes$fdr)

offlinePower <- c(offlinePower, offRes$power)

onlineFDR <- c(onlineFDR, onRes$fdr)

onlinePower <- c(onlinePower, onRes$power)

}

aggRes3[j] <- list(data.frame(noFDR, noPower, offlineFDR, offlinePower, onlineFDR, onlinePower))

}

save(aggRes3, file='aggfinalRes3')

data.frame(noFDR) %>%

ggplot(aes(x=seq(from=1,to=length(noFDR),by=1), y = noFDR)) +

geom_point() +

geom_hline(yintercept=mean(noFDR))

data.frame(noPower) %>%

ggplot(aes(x=seq(from=1,to=length(noPower),by=1), y = noPower)) +

geom_point() +

geom_hline(yintercept=mean(noPower))

data.frame(offlineFDR) %>%

ggplot(aes(x=seq(from=1,to=length(offlineFDR),by=1), y = offlineFDR)) +

geom_point() +
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geom_hline(yintercept=mean(offlineFDR))

data.frame(offlinePower) %>%

ggplot(aes(x=seq(from=1,to=length(offlinePower),by=1), y = offlinePower)) +

geom_point() +

geom_hline(yintercept=mean(offlinePower))

data.frame(onlineFDR) %>%

ggplot(aes(x=seq(from=1,to=length(onlineFDR),by=1), y = onlineFDR)) +

geom_point() +

geom_hline(yintercept=mean(onlineFDR))

data.frame(onlinePower) %>%

ggplot(aes(x=seq(from=1,to=length(onlinePower),by=1), y = onlinePower)) +

geom_point() +

geom_hline(yintercept=mean(onlinePower))

totalDf <- data.frame()

for (i in 1:15){

aggRes[[i]]$batch <- 1:20

}

for (i in 1:15){

totalDf <- rbind(totalDf, aggRes[[i]])

}

data.frame(totalDf) %>%

ggplot(aes(x=batch, y = noPower)) +

geom_smooth() +

geom_point() +

labs(x = 'Batch', y='FDR') +

geom_hline(yintercept=0.05, col='red')

data.frame(totalDf) %>%
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ggplot(aes(x=batch, y = noPower)) +

geom_smooth() +

geom_point() +

labs(x = 'Batch', y='Power')

data.frame(totalDf) %>%

ggplot(aes(x=batch, y = offlineFDR)) +

geom_smooth() +

geom_point() +

labs(x = 'Batch', y='FDR') +

geom_hline(yintercept=0.05, col='red')

data.frame(totalDf) %>%

ggplot(aes(x=batch, y = offlinePower)) +

geom_smooth() +

geom_point() +

labs(x = 'Batch', y='Power')

data.frame(totalDf) %>%

ggplot(aes(x=batch, y = onlineFDR)) +

geom_smooth() +

geom_point() +

labs(x = 'Batch', y='FDR') +

geom_hline(yintercept=0.05, col='red')

data.frame(totalDf) %>%

ggplot(aes(x=batch, y = onlinePower)) +

geom_smooth() +

geom_point() +

labs(x = 'Batch', y='Power')

totalDf3 <- data.frame()

for (i in 1:8){

aggRes3[[i]]$batch <- 1:50

}
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for (i in 1:8){

totalDf3 <- rbind(totalDf3, aggRes3[[i]])

}

data.frame(totalDf3) %>%

ggplot(aes(x=batch, y = noPower)) +

geom_smooth() +

geom_point() +

labs(x = 'Batch', y='FDR') +

geom_hline(yintercept=0.05, col='red')

data.frame(totalDf3) %>%

ggplot(aes(x=batch, y = noPower)) +

geom_smooth() +

geom_point() +

labs(x = 'Batch', y='Power')

data.frame(totalDf3) %>%

ggplot(aes(x=batch, y = offlineFDR)) +

geom_smooth() +

geom_point() +

labs(x = 'Batch', y='FDR') +

geom_hline(yintercept=0.05, col='red')

data.frame(totalDf3) %>%

ggplot(aes(x=batch, y = offlinePower)) +

geom_smooth() +

geom_point() +

labs(x = 'Batch', y='Power')

data.frame(totalDf3) %>%

ggplot(aes(x=batch, y = onlineFDR)) +

geom_smooth() +

geom_point() +

labs(x = 'Batch', y='FDR') +

geom_hline(yintercept=0.05, col='red')
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data.frame(totalDf3) %>%

ggplot(aes(x=batch, y = onlinePower)) +

geom_smooth() +

geom_point() +

labs(x = 'Batch', y='Power') +

theme_gray(base_size=20)
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