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Abstract

Escheria coli (E. coli), a bacterium often found in the intenstinal tract of
warm-blooded vertebrates, adapts to environmental stressors (e.g., osmotic
or temperature changes) by altering the patterns of its gene expression. In
response to stress, the abundance of RNA associated with particular genes
will change in the cell [2], and this process can be measured using RNA-
sequencing data. In order to model RNA-sequencing data, Adams et. al
2023 used sicegar, a package in R which fits sigmoidal curves to time course
data using the Levenberg-Marquardt Algorithm. In this thesis, we iden-
tify key issues in sicegar’s estimation techniques to provide suggestions
on best practices to sicegar users. We explore three potential roadblocks:
(1) Corner cases in sigmoidal and double sigmoidal models, (2) Biases in
the Levenberg-Marquardt Algorithm, and (3) Setting hyperparameters for
model estimation in sicegar. In order to assess how accurately sicegar es-
timates model parameters, we use a simulation procedure to generate noisy
data from known parameters, which allows us to identify potential estimation
biases. We conclude that setting appropriate hyperparameters, both the up-
per bounds and starting values of the nonlinear least squares estimation, are
highly influential on sicegar’s ability to estimate the underlying sigmoid
model of RNA-seq data. We are able to get sicegar to work extremely
well when we set our hyperparameters directly from the data. Therefore,
we believe there is more work to be done to explore techniques for setting
hyperparameters, such as estimating them directly from RNA-seq data, to
ensure the package works reliably.
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Chapter 1

Introduction

Bacteria often respond to changing environments or stressors by altering the
pattern of their gene expression, which functions as a survival mechanism
to relieve stress and adapt to unfavorable conditions [8]. Many of these
stress-responses are triggered by particular conditions, such as exposure to
increased temperature, salt, or starvation.

Escherichia coli (E. coli) is a bacterial species that includes both pathogenic
and nonpathogenic strains, and is often found in the intestinal tract of warm-
blooded vertebrates [3]. Like other bacteria, E. coli alters its gene transcrip-
tion patterns in response to external stimuli and stressors. The regulation of
gene expression in E. coli occurs at the transcriptional level and is controlled
by RNA polymerase. Sigma factors, which are subunits of all bacterial RNA
polymerases, are responsible for directing the polymerase to specific regions
on DNA, called promoters, to initiate transcription [9]. RNA polymerase
then transcribes sections of the cell’s DNA into RNA, which is then trans-
lated into a protein.

The sigma factor RpoS regulates the expression for over 1000 different
genes in E. coli. RpoS activates in response to stress and accumulates in
the cell after the initial exposure. The timing of RpoS activation varies
depending on the stressor to which the cell is exposed (e.g., stationary phase,
high osmolarity, or cold shock). Since the availability of RpoS varies in time,
the expression for the genes that it regulates similarly varies. Additionally,
the transcriptional response to RpoS accumulation varies based on gene-type.
While some genes achieve high levels of transcription in response to low levels
of RpoS, others only achieve high levels of transcription in response to high
levels of RpoS [1].
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Adams et al. (2023) build upon this understanding of RpoS to inves-
tigate the expression of over 1,000 genes in E. coli and their response to
three distinct stressors: high osmolarity, low temperature, and transition to
stationary phase. They hypothesized that the transcriptional response of E.
coli cells will differ across gene sensitivity classes and stressor type [2]. To
understand how gene expression differed across gene and stressor type, gene
expression was measured using RNA-Sequencing data.

To compare the transcriptional timing of different genes, Adams et al.
(2023) were concerned with extracting the onset time of transcription. When
a gene is activated via RpoS for transcription, the RNA polymerase synthe-
sizes RNA molecules, so their abundance increases. Onset time marks the
moment where the half-maximal abundance of RNA is reached, and serves as
a readout of the transcriptional response regulated by RpoS. Onset time can
help us measure how quickly a gene responds after transcription is initiated,
which allows us to compare transcriptional timing of different genes across
different stress conditions.

Adams et. al (2023) used sicegar to estimate onset time. sicegar is
an R package that fits a sigmoidal model to time-intensity data [5]. Sigmoid
functions model time versus intensity, where we assume intensity increases
over time until a max saturation is reached. In a single sigmoid model, this
max saturation is asymptotically approached as time goes to infinity, whereas
in a double sigmoid model, intensity decreases down to a lower asymptotic
value. Sigmoid functions are useful to us in approximating the biological
phenomenon of transcription, where the RNA sequence for a specific gene
accumulates in the cell.

Measuring and reporting onset time was crucial in supporting the Adams’
(2023) hypotheses that the transcriptional timing of RpoS-regulated genes
would differ across stressor types. Adams found that the temporal dynamics
of RpoS levels (when and how rapidly it accumulates) drive stress-specific
patterns of gene expression, affecting the onset time of differentially expressed
genes. The median onset time of RpoS-regulated genes varied across the three
stressors. Onset time functioned as a measure of transcriptional timing, and
was dependent upon sicegar estimates.

It would be fairly simple to accept sicegar results without further inves-
tigation. However, given the biological importance of onset time, a deeper
exploration of the package is necessary to determine the accuracy of its pa-
rameter estimation techniques. In order to uncover biases, we are presented
with a problem when using real data: how can we know whether or not a pa-
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rameter estimation is accurate, since the reason we fit our model is to unveil
these parameters in the first place?

Simulation, where we generate noisy data from a known, underlying
model, can help to measure bias and variability. After feeding simulated
data into sicegar, we have the ability to compare the fitted parameters to
ones that we know to be true. This past summer, Professor Jo Hardin and
Federica Domecq Lacroze investigated the bias in sicegar’s estimation of
onset time using this technique. After running numerous simulations, Prof.
Hardin and Federica found that the optimization routine consistently under-
estimated onset time, especially as the data became noisier.

In this thesis, we build upon the foundation they set to ask: why? Can
we uncover the reason that the estimation of onset time is biased? We take
three main approaches to the problem:

1. Further Exploration of the Sigmoid and Double Sigmoid Func-
tions: By gaining a deeper understanding of the mathematical be-
havior of sigmoidal functions, we explore what parameters conditions
impact onset time and our ability to measure it.

2. Levenberg-Marquardt Algorithm: sicegar uses the nonlinear-
least squares Levenberg-Marquardt algorithm to estimate all model
parameters. We investigated this optimization routine to determine
whether it presents any potential biases.

3. sicegar: Combining the previous two approaches, we examined sicegar
functions via simulations to better understand how the package returns
the parameter estimations. We also determined that some user-control
of the optimization settings improved estimation accuracy.

Ultimately, our goal was to provide recommendations to scientists using
this package to model time-course data with biological implications, by prop-
erly quantifying and describing the biases it has, as well as offering solutions
to combat them.
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Chapter 2

Sigmoid Models

Sigmoid functions are used to model time versus intensity, where we assume
intensity increases over time until a max saturation is reached. They are
employed in various fields, including biology. In our case, the sigmoid func-
tion is a useful tool for modeling the level of RNA expression in E. coli cells
after the onset of stress. In this chapter, we characterize two main types
of sigmoid functions, single and double, and describe their relevance to our
project.

2.1 Primer on RNA-Sequencing Data

To understand why sigmoid models are useful to our project, we first need to
understand the structure of RNA-Sequencing (RNA-seq) data. RNA-seq is
a technique that examines the quantity of RNA in a biological sample using
next-generation sequencing, and can indicate which genes in a cell are turned
on or off at a given time [10]. The data provide a snapshot in time of the
abundance of RNA associated with a particular gene in the cell. Therefore,
we can use RNA-seq data to measure RNA abundance over time. Figure 2.1
illustrates the form of RNA-seq data for two genes in E. coli studied in
Adams et. al (2023).

7



(a) gadC Gene (b) gmr Gene

Figure 2.1: RNA-seq data for gadC and gmr genes in E. coli cells after
undergoing cell starvation. Multiple replicates are taken at each time point.
Time, in minutes, is plotted along the x-axis, and the intensity/abundance
of RNA in the cell is plotted on the y-axis.

2.1.1 Onset Time

When working with time-course RNA-seq data, specifically from Adams et.
al (2023), there are two important considerations. The first is that each time
point will have multiple intensity values, because replicates were taken in the
experiment.

Secondly, we are concerned with the measurement of onset time, which
is defined as the time when the half-maximal abundance of RNA is reached
in the cell [2]. Mathematically, that is the argument of the function at the
midpoint between the minimum and maximum intensity levels. Figure 2.2
shows us the same RNA-seq data as Figure 2.1, along with the approximate
measure of onset time.
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(a) gadC Gene (b) gmr Gene

Figure 2.2: RNA-seq data for gadC and gmr genes in E. coli with onset time
labeled. Note that the onset time (dashed line) is later for gadC than gmr.
Additionally, as you can see clearly highlighted in the boxes, each time point
has multiple replicates.

2.2 Sigmoid Model

To model RNA-seq data, we can employ sigmoid models. A single sigmoid
function models time versus intensity, where intensity increases until reaching
an asymptotic level, where it remains as time approaches infinity. A common
single-sigmoid function is the logistic function,

f(x) =
L

1 + e−k(x−x0)
. (2.1)

The logistic function is a continuous-deterministic model of population
growth which was first published by Pierre Verhulst in 1838 [13]. Notably, it
supplements the exponential growth function by adding a carrying capacity
L which represents the maximum population size given available resources.

We can apply this model to the rise of RNA expression for a particular
gene in E. coli cells post-stress exposure. Equation 2.2 characterizes the
sigmoid function we reference in this thesis:

fss(x) = h0 +
h1 − h0

1 + e−a(x−t1)
. (2.2)

This function, which from now on we will refer to as the single-sigmoid
function, has four key parameters:
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1. h0 = limx→−∞f(x)

2. h1 = maximum of the sigmoid curve, where h1 > h0

3. a = proportional to the slope of the sigmoid curve at x = t1

4. t1 = inflection point of the sigmoid curve (shown below).

5. h0 < h1

A typical single-sigmoid function is shown in Figure 2.3 with labeled
parameters.

Figure 2.3: Single Sigmoid with parameters labeled [5]

For the single sigmoid function, t1 is both the inflection point and mid-
point of the sigmoid curve (aka onset time).

Claim 1. t1 is the inflection point and onset time of the single sigmoid curve.

Proof. We will first take the second derivative of our single sigmoid function.

f ′′
ss(x) = [(h1−h0)(−a2)(e−a(x−t1))][−2(1 + e−a(x−t1))

−3
(e−a(x−t1))+(1 + e−a(x−t1))

−2
]

To find the inflection point, we set this second derivative equal to 0.
However, we can exclude the first half of the equation, since none of those
terms can possibly equal 0.
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−2(1 + e−a(x−t1))
−3
(e−a(x−t1)) + (1 + e−a(x−t1))

−2
= 0

−2(1 + e−a(x−t1))
−3
(e−a(x−t1)) = −(1 + e−a(x−t1))

−2

2(e−a(x−t1)) =
(1 + e−a(x−t1))

−2

(1 + e−a(x−t1))
−3

2(e−a(x−t1)) = 1 + e−a(x−t1)

e−a(x−t1) = 1

We then take the natural log of both sides:

−a(x− t1) = 0

at1 = ax

t1 = x

Therefore x = t1 is our inflection point. We now show that the function
fss(x) evaluated at t1 is equivalent to the midpoint between h0 and h1:

fss(t1) = h0 +
h1 − h0

1 + e−a(t1−t1)
= h0 +

h1 − h0

2
=

h0 + h1

2
.

Therefore, we can use the parameter t1 of the single sigmoid model to
represent onset time when working with RNA-seq data.

2.3 Double Sigmoid Model

A double sigmoid curve also models time versus intensity, however the be-
havior of the function is slightly different. The model first increases to a
maximum intensity, but then decays to a final asymptotic level. It has one
global maximum.
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2.3.1 Continuous Characterization of Double Sigmoid

We can start by writing a continuous double sigmoid function by taking the
product of two sigmoid functions with slopes a1 and a2:

fds(x) =
1

h1

(
h0 +

h1 − h0

1 + e−a1(x−t1)

)(
h2 +

h1 − h2

1 + ea2(x−t2)

)
. (2.3)

We scale the function by a factor of h1 to ensure the maximum amplitude
does not exceed h1.

In this model we have six key parameters:

1. h0 = limx→−∞f(x)

2. h1 = maximum of the sigmoid curve

3. h2 = limx→∞f(x)

4. a1 = proportional to the slope of the sigmoid curve at x = t1

5. a2 = proportional to the slope of the sigmoid curve at x = t2

6. t1 = approximate inflection point of the first sigmoid curve

7. t2 = approximate inflection point of the second sigmoid curve

In order to maintain the correct double sigmoidal shape as shown in
Figure 2.4, the parameters must follow the restrictions:

1. h0 < h2 < h1

2. a1, a2 > 0

3. t1 < t2

12



Figure 2.4: Double sigmoid model with additional parameters [5]

Since we are still concerned with estimating the onset time of the double-
sigmoidal function, it is important to note that t1 is only the approximate
inflection point of the first sigmoid curve, rather than the true inflection
point. In certain cases, t1 may be very far from the correct value of onset
time. Figure 2.5 highlights one such case:
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Figure 2.5: Comparing the values of t1 across two double-sigmoid curves each
defined by the parameters given on the plot. On the left, t1 approximates
the inflection point well on the curve, whereas on the right, t1 is clearly not
the inflection point.

For our project, we want to understand when t1 is approximately the
inflection point of the sigmoid curve, because that would allow us to use t1
as a proxy for onset time.

We can estimate when t1 is approximately the inflection point of the
first sigmoid curve by analyzing the behavior of the second derivative of the
double sigmoid:

f ′′
ds(x) =

1

h1

(g′′1(x)g2(x) + 2g′1(x)g
′
2(x) + g1(x)g

′′
2(x)), (2.4)

where

g1(x) =

(
h0 +

h1 − h0

1 + e−a1(x−t1)

)
,

g2(x) =

(
h2 +

h1 − h2

1 + ea2(x−t2)

)
,

and

g′1(x) =
(h1 − h0)a1e

−a1(x−t1)

(1 + e−a1(x−t1))2
,
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g′2(x) =
(h1 − h2)a2e

−a2(x−t2)

(1 + e−a2(x−t2))2
.

The second term of Equation 2.4, 2g′1(x)g
′
2(x), couples the derivatives

of the two single sigmoid functions. In the single-sigmoid case, f ′′
ss(t1) = 0

because g′′1(t1) = 0. However, the second term moves our inflection point
away from t1 in cases when 2g′1(x)g

′
2(x) is very large. Therefore, for t1 to be

the inflection point of the double sigmoid, 2g′1(x)g
′
2(x) needs to be close to

0. This happens in two key cases:

1. The value of g′2(x) is small at x = t1 (i.e, t1 and t2 are far apart).

The behavior of

g′2(x) =
(h1 − h2)a2e

−a2(x−t2)

(1 + e−a2(x−t2))2

tells us how g2(x) changes at any given value of x. The maximum of
g′2(x) occurs at x = t2, and decays rapidly as x moves away from t2. At
x = t1,

g′2(t1) =
(h1 − h2)a2e

−a2(t1−t2)

(1 + e−a2(t1−t2))2
.

If t1 and t2 move further apart, the value of e−a2(t1−t2) → 0, so g′2(x) →
0. In other words, the value of t1 will be in the tail of the sigmoid
curve for g2(x), where it has a slope ≈ 0. Therefore, g2(x) has very
little influence over the double sigmoid curve at x = t1, so t1 remains
close to the inflection point of the first curve.

We could formalize this relationship as:

e−a2(t1−t2) = 0 ⇒ −a2(t1 − t2) ≪ 0 ⇒ t2 − t1 ≫
1

a2
.

This leads into our second consideration.

2. The value of a2 is small enough that the slope of the second sigmoid
curve does not impact that of the first sigmoid curve across all three
terms of Equation 2.4.

Additionally, even if t1 and t2 are sufficiently apart, there are specific
corner cases in which Equation 2.3 becomes non-sigmoidal. For example, for
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certain values of a1 and a2, our function will take on a local max and local
min, which makes it non-sigmoidal (shown in Figure 2.6).

Figure 2.6: Example of two single sigmoidal functions whose product takes
on a local minimum in addition to a local maximum. Plot (A) shows the first
sigmoid function, g1(x), while Plot (B) shows the second sigmoid function,
g2(x). Plot (C) shows their product, which is not double-sigmoidal. Param-
eters: h0 = 0, h1 = 2, h2 = 0.5, a1 = 1, a2 = 10, t1 = 10, t2 = 11 [5]

There are a number of cases in which our function becomes non-double
sigmoidal. For example, while holding all other parameters constant, we can
observe how the number of critical points of fds(x) changes as we increase
the steepness of a2. Note, we would expect a double sigmoid function to have
one critical point, because there is one maximum and no minimum values.
Figure 2.7 shows the number of critical points of Equation 2.5, which is a
simplified version of Equation 2.3,

f(x) =
1

1 + e−a1(x−t1)
+

1

1 + ea2(x−t1)
+

1

(1 + e−a1(x−t1))(1 + ea2(x−t2))
, (2.5)

when plotting 90 a2 values between (1, 10) along with a set of parameters:

1. a1 = 3

2. t1 = 10

3. t2 = 11

The critical points of the function in Equation 2.5 will be the same as
Equation 2.3, since we only scale by constants h0, h1, h2.
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Figure 2.7: We numerically solved for the critical points of Equation 2.5 for
a set of parameters a1 = 3, t1 = 10, t2 = 11 and iterating through 90 values
of a2 ∈ [1, 10], shown on the x-axis. We then plotted the number of critical
points on the y-axis. The number of critical points that Equation 2.5 takes
on increases from 1 to 2 as the value of a2 increases.

Here, we hold a1, t1, and t2 constant at 3, 10, and 11 respectively. You
can see that at a certain value of a2 (around 3.3), our function takes on 2
critical points rather than 1.

2.3.2 Piecewise

In order to address edge cases like the one in Figure 2.7, Caglar et. al (2018)
proposes a piecewise double sigmoid function [5], where for some value t∗:

I(x) =

{
c1fbase(t) if t ≤ t∗

c2fbase(t) + h2 if t > t∗
(2.6)

where

c1 =
h1

fmax

(2.7)

c2 =
h1 − h2

fmax

. (2.8)
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The piecewise double sigmoid function begins with a base function, which
is the product of two sigmoid functions:

fbase(x) =
1

1 + e−a1(x−t1)
· 1

1 + ea2(x−t2)
(2.9)

where argmaxxfbase(x) = x∗.
Equation 2.9 follows the same double sigmoid shape as Equation 2.3, but

always decays back to zero. However, we use Equation 2.9 as the base of our
piecewise function because it never attains a local minimum, like that seen
in Figure 2.6 (C).

Claim 2 (Base Double Sigmoid). fbase(x) has one local maximum.

Proof. We follow the proof provided in Caglar et. al 2018 [5]:
We define the argument of the maximum of fbase(x) as x

∗, therefore

max(fbase(x)) = fbase(x
∗)

We know that t2 > t1, so we can rewrite t2 = t1 + L, where L is some
positive real number. Thus, rewrite Equation 2.9 as:

fbase(x) =
1

1 + e−a1(x−t1)
· 1

1 + ea2(x−L−t1)

By the nature of derivatives, we know that at x = x∗, the derivative of
fbase(x) will be 0,

d

dx
fbase(x)

∣∣∣∣
x=x∗

= 0

We define variables u = x− t1 and u∗ = x∗ − t1, and define the function
g(u) = fbase(u + t1). Therefore, finding the roots of g(u) is equivalent to
finding the roots of fbase(x), and we define g(u) as:

g(u) =
1

1 + e−a1(u)
· 1

1 + ea2(u−L)

Which implies that:

d

du
g(u)

∣∣∣∣
u=u∗

= 0

18



Now, we take the derivative of g(u) at u∗ and set equal to 0 to solve for
the critical point:

d

du
g(u∗) =

ea1u
∗+a2(L−u∗)[a1(e

a2(L−u∗) + 1)− a2(e
a1u∗

+ 1)]

(ea1u∗ + 1)2(ea2(L−u∗) + 1)2
= 0

Since we will set this derivative = 0, we are only concerned with the
numerator, which we can rewrite as:

ea2(u
∗−L)−a1u∗

(a1 + a1e
−a2(u∗−L) − a2 − a2e

a1u∗
) = 0

Since ea2(u
∗−L)−a1u∗

can never equal 0, we want to focus on the term in
the parantheses to determine our critical points. We define this section as:

h(u) = a1 + a1e
−a2(u−L) − a2 − a2e

a1u

To find the number of roots of h(u), we first examine its limiting proper-
ties:

lim
u→−∞

h(u) = ∞

lim
u→∞

h(u) = −∞

By the Mean Value Theorem, h(u) must have at least one root.
We can also observe that h(u) is strictly decreasing, where

h′(u) = −a1a2e
−a2(u−L) − a1a2e

a1u < 0

for any u, since a1, a2 are both always positive. Therefore, by Rolle’s Theo-
rem, h(u) can at most one root.

Now we can show the root of h(u) is a local maximum of g(u) by taking
the double derivative of g(u):

d2

du2
g(u) =

ea1u−2a2(L−u)

(ea1u + 1)3 + (e−a2(L−u) + 1)3
· [(a1(ea2(L−u) + 1)− a2(e

a1u + 1))2

−a21e
a1u(ea2(L−u) + 1)2 − a22(e

a1u + 1)2ea2(L−u)
]

The term (a1(e
a2(L−u)+1)−a2(e

a1u+1))2 is equivalent to h(u)2, and thus
equals 0 at u = u∗. Additionally:
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−a21e
a1u(ea2(L−u) + 1)2 − a22(e

a1u + 1)2ea2(L−u) < 0,

and our first term is strictly positive. Therefore, d2

du2 g(u) < 0 at u = u∗,
which means that our critical point of u = u∗ is a local maximum.

To characterize the double sigmoid function, we can split fbase(x) at x =
x∗ and scale each base function separately to represent sigmoidal growth
and sigmoidal decay. This ensures we never attain a local minimum. Our
piecewise is defined as:

I(x) =

{
c1fbase(x) if x ≤ x∗

c2fbase(x) + h2 if x > x∗ (2.10)

where

c1 =
h1

fmax

(2.11)

c2 =
h1 − h2

fmax

. (2.12)

Equation 2.10 will have the same behavior as Equation 2.9, since the
presence of a critical point will not be impacted by simply scaling the function
by constants. The derivatives of c1fbase(t) and c2fbase(t) + h2 will behave
identically to fbase(t), since those constants will become irrelevant when we
set the derivatives = 0. For the remainder of this thesis, when describing a
double-sigmoid, we will use Equation 2.10.
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Chapter 3

sicegar

3.1 Overview

sicegar, an R package that fits sigmoidal models to time-intensity data,
was created in 2018 to analyze single-cell viral growth curves [5]. After the
user inputs their own data, the package categorizes it as sigmoidal. dou-
ble sigmoidal, or ambiguous, and returns a set of parameters of best fit if
appropriate.

The package has a number of key functions, which include the following:

3.1.1 Key Functions

1. fitAndCategorize

fitAndCategorize is the simplest way to use sicegar, since it cate-
gorizes data as sigmoidal, double sigmoidal, or ambiguous, and then
identifies the best-fitting parameters within that model-type. Many
of the other key sicegar functions are nested in fitAndCategorize in
order to optimize, report, and plot estimated parameters to the input
data. The key inputs are:

dataInput, threshold-t0-max-int, startList-sm, startList-dsm,

threshold-intensity-range

The start values and intensity thresholds can be adjusted by the user,
and should represent scaled (normalized) parameters, since our data is
normalized before the fitting process begins.
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This leads to the first key nesting function in fitAndCategorize:

2. normalizeData

In sicegar, data are normalized to a [0,1] interval on both axes before
the fitting process begins. Normalizing the data allows the program to
set universal hyperparameters (start values, upper, and lower bounds)
for the non-linear least squares optimization algorithm, so that the user
does not have to set initial hyperparameters to match the original scale
of the data.

normalizeData extracts time and intensity columns from our data in-
put and performs a min-max normalization on both the time and in-
tensity axes:

Xnorm =
X −Xmin

Xrange

(3.1)

Ynorm =
Y − Ymin

Yrange

(3.2)

The function returns a new, normalized dataset, as well as the pa-
rameters used to scale the data, including Xmin, Ymin, etc. Storing
the scaling parameters allows the package to transform the optimized
parameters back into the original space for user interpretability.

3. sigmoidalFitFunction

sigmoidalFitFunction takes our normalized data and startList-sm.
It initializes a starting vector (either the default or user generated) and
then runs an optimization of sigmoidalFitFormula using:

try(minpack.lm::nlsLM(intensity ~

sicegar::sigmoidalFitFormula(time, maximum, slopeParam, midPoint),

dataFrameInput,

start = counterDependentStartList,

control = list(maxiter = n_iterations, minFactor = min_Factor),

lower = lowerBounds, upper = upperBounds, trace = F),

silent = TRUE)
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The optimization technique uses the Levenberg-Marquardt Algorithm
(LMA), implemented in the minpack.lm package via the nlsLM func-
tion [12]. The LMA is a non-linear least squares method of approxi-
mation, which is described in Section 3.2.

4. sigmoidalRenormalizeParameters

sigmoidalRenormalizeParameters uses the saved data scaling met-
rics to convert our estimated parameters back into original space. The
function primarily does this for parameters P by following the formula:

Pnorm =
P − Pmin

Prange

,

therefore

P = Pnorm · Prange + Pmin.

For parameters h0, h1, the normalized values are determined by the
y-axis (intensity), so we would have:

h0 = h0norm · Yrange + Ymin,

h1 = h1norm · Yrange + Ymin

Similarly, for the parameter t1, the normalized values are determined
by the x-axis (time), so we have:

t1 = t1norm ·Xrange +Xmin.

However, transforming the slope parameter, a, back into original space
is slightly more complicated. The function assumes our slope is linearly
transformed from original space into normalized space. We know that
a linear slope a follows the formula:

a ∝ Y2 − Y1

X2 −X1

.

Therefore, Equation (3.3) represents our normalized slope anorm.

23



anorm =

Y2−Ymin

Yrange
− Y1−Ymin

Yrange

X2−Xmin

Xrange
− X1−Xmin

Xrange

. (3.3)

Simplifying this equation we get

anorm =
(Y2 − Y1) ·Xrange

(X2 −X1) · Yrange

= a · Xrange

Yrange

. (3.4)

Therefore, to transform our slope back into original space, we can com-
pute:

a = anorm · Yrange

Xrange

. (3.5)

However, sigmoidalRenormalizeParameters() rescaling of the slope
parameter follows the formula

a = anorm · 1

Xrange

. (3.6)

This discrepancy stems from the fact that the maximum slope of our
sigmoid curve Smax ̸= a, our slope parameter for the sigmoid model.
Defining our sigmoid curve as,

f(x) = h0 +
h1 − h0

1 + e−a(x−t1)
(3.7)

we can determine the maximum slope of our function, which occurs at
the midpoint x = t1, by computing f ′(t1) :

f ′(t1) =
a(h1 − h0)

4
. (3.8)

Therefore, Smax = a(h1−h0)
4

, which implies that

a =
Smax · 4
h1 − h0

. (3.9)
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At the same time, we know that Smax = Smaxnorm · Yrange

Xrange
by Equa-

tion 3.5.

Therefore, we have:

a =
Smax · 4
h1 − h0

=
Smax · 4

Yrange · (h1norm − h0norm)
, (3.10)

which we can rewrite as

a =
4Smaxnorm · Yrange

Xrange

Yrange · (h1norm − h0norm)
=

4Smaxnorm

Xrange · ( (h1−h0)
Yrange

)
. (3.11)

Since (h1−h0)
Yrange

is approximately equal to 1, we can approximate Equa-

tion 3.11 with:

4Smaxnorm

Xrange

(3.12)

Equation 3.12 looks similar to sicegar’s descaling calculation, off by
a factor of four. This factor is something for us to keep in mind as we
estimate a using fitAndCategorize.

3.2 Optimization: Levenberg-Marquardt Al-

gorithm

The Levenberg-Marquardt Algorithm (LMA) is a method of least-squares
approximation which combines the Gauss-Newton algorithm and the gradi-
ent descent method [7]. In particular, the LMA is used to solve nonlinear
least squares problems which require an iterative optimization process to
find a solution. Nonlinear least squares algorithms minimize the sum of the
squares of the errors between the estimated model function and our data
by repeatedly updating the values of model coefficients until we arrive at a
minimum. The LMA is employed by sicegar through the minpack.lm pack-
age to numerically approximate the parameters of best fit for a sigmoidal or
double-sigmoidal model. In order to understand the LMA, we first need to
define the optimization methods of gradient descent and Gauss-Newton.
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3.2.1 Gradient Descent

The gradient descent algorithm updates model coefficients in the direction
opposite to the gradient of the objective function. In other words, the “steep-
est” direction downhill from the gradient.

Given an ordinary-least-squares optimization problem with a set of m
points (xi, yi) and a parameter vector β, we want to minimize the objective
function:

S(β) =
m∑
i=1

[yi − f(xi, β)]
2

where f(xi, β) is the output of our function as predicted by our current model,
for example, the sigmoid or double sigmoid function. Since we are working
with a nonlinear least squares problem, we can apply the gradient descent
algorithm to our objective function to iteratively solve for the parameters β
of best fit. We follow the derivation of Gavin (2023) [4]:

First, we compute the gradient of the objective function with respect to
β:

∇S(β) =
m∑
i=1

−2(yi − f(xi, β))
∂(f(xi, β))

∂β
= −2

m∑
i=1

(yi − f(xi, β))
∂(f(xi, β))

∂β

(3.13)
To make things simpler, we can rewrite this gradient in vector form. Our

residual vector
y − f(x, β)

has m rows. We define the Jacobian:

J =
∂(f(x, β))

∂β

to be the partial derivative evaluated over all points m and all p param-
eters in β. Therefore, the Jacobian is an (m x p) dimensional matrix. To
write the gradient with respect to β as a (p x 1) vector, we multiple by the
transpose of the Jacobian:

∇S(β) = −2JT [y − f(x, β)].
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Therefore, the coefficient update hgd that moves the coefficients in the
direction of steepest descent is:

hgd = −α∇S(β) = −α(−2JT [y − f(x, β)]) = α′JT [y − f(x, β)],

where α′ is a positive scalar that determines the size of the step in the
direction opposite the gradient. This coefficient update will move us in the
steepest direction towards the minimum of our objective function [4]. The
gradient descent method is robust, and converges well for problems with
simple objective functions, but often it can take a long time to converge to
the optimal solution.

3.2.2 Gauss-Newton

The Gauss-Newton Method is another minimization algorithm which as-
sumes our objective function is approximately quadratic in coefficients near
the optimal solution.

We start with the same objective function:

S(β) =
m∑
i=1

[yi − f(xi, β)]
2

At each iteration, we update our parameter vector to a new estimate
(β + δ), where

f(xi, β + δ) ≈ f(xi, β) + Jiδ

and J from Section 3.2.1 is equivalent to Ji in vector form. We substitute
the approximation into our original objective function:

S(β + δ) =
m∑
i=1

[yi − f(xi, β)− Jiδ]
2 (3.14)

To minimize the new objective function in Equation 3.14, we take the
derivative with respect to δ rather than β:

∂

∂δ

m∑
i=1

[yi − f(xi, β)− Jiδ]
2 = 2

m∑
i=1

Ji[yi − f(xi, β)− Jiδ]
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To find the minimum of our function, we set this derivative equal to zero
and solve for δ, the updated vector of our coefficients:

0 = 2
m∑
i=1

Ji[yi − f(xi, β)− Jiδ]

0 =
m∑
i=1

Ji[yi − f(xi, β)]−
m∑
i=1

J2
i δ

JTJδ = JT (y − f(x, β))

δ = (JTJ)−1JT (y − f(x, β))

Therefore, the coefficient updates to the vector δ that minimize our objec-
tive function follow (JTJ)−1JT (y− f(x, β)) [4]. The Gauss-Newton method,
while less stable than gradient descent, typically converges much faster, es-
pecially as the objective function approaches the optimal solution.

3.2.3 Combining Methods: Levenberg-Marquardt Al-
gorithm

The Levenberg-Marquardt Algorithm alternates between the gradient de-
scent and Gauss-Newton coefficient updates depending on how close we are
to our solution. Importantly, the algorithm adds a damping parameter λ to
the Gauss-Newton minimization function:

(JTJ + λI)δ = JT (y − f(x, β))

Small values of λ result in a Gauss-Newton update, while large values
of λ result in a gradient descent update. When λ → ∞, (JTJ + λI)−1 →
1
λ
I, which tends towards 0. Therefore, our optimization is dominated by a

scaled identity matrix in the gradient direction. In the LMA, the damping
coefficient λ is initialized to be large so that the first few iterative steps are in
the steepest direction, mimicking gradient descent. If any iteration happens
in a “worse” direction than before, such that S(β+δ) > S(β), λ is increased.
However, if the solution improves, then λ is lowered and LMA approaches the
Gauss-Newton method (which finds our local minimum more more quickly).
This allows us to use a faster and more flexible method (Gauss-Newton)
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when we are close to our optimal solution, and a slower but stabler method
(gradient descent) when we are far from our solution. In Marquardt’s update,
λ is scaled by the diagonal of the Hessian matrix JTJ for each coefficient [6].

3.3 sicegar Parameter Estimation

The primary use of sicegar is to fit sigmoidal models to time-intensity
data. In our project, we want to use sicegar to estimate the onset time of
RNA-abundance in E. coli cells after being exposed to a stressful stimulus.
As long as our data are in this time-intensity form, we can feed it directly
into fitAndCategorize, where the data are normalized, the LMA is run on
our data, and estimated parameters are rescaled and returned in the model
output.

3.3.1 Setting Hyperparameters

Hyperparameters are user-set parameters whose values dictate the learning
process of an algorithm. sicegar allows the user to set multiple hyperpa-
rameters for the Levenberg-Marquardt Algorithm before the fitting process
begins. The two key hyperparameters we will outline here are:

1. Bounds Each parameter is given an upper and lower bound, which
mark the maximum and minimum values that parameter can take in
any given iteration of our model. In the case of the sigmoid model, we
set bounds for h0, h1, a, t1.

2. Starting Values Starting values are the initial guess we give the LMA
for what we think our parameters should be. The LMA begins the
fitting process with the initial guesses for the vector β = (h0, h1, a, t1)
and updates the coefficient vector from there.

3.3.2 Simulating

Our main project goal is to assess how well sicegar estimates sigmoid and
double-sigmoid model parameters: specifically, how close are the sicegar

estimates to the true, underlying parameters of our data.
In order to understand sicegar’s performance, we need to run the op-

timization routine on simulated data, which is noisy data generated from
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known parameter values [11]. This allows us to run sicegar functions, such
as fitAndCategorize, on data where we have the ability to directly compare
the estimated parameters to the true parameter values.

Below, we outline an example of how the simulation process works: this
method was crucial in running analyses for this thesis project. All simulations
were run in R.

Simulation Example

We start by defining a base sigmoidal function following the form given in
Equation 3.15:

fsim(x) =
750

1 + e−0.05(x−160)
(3.15)

Thus, the true parameters for our model are:

1. h0 = 0

2. h1 = 750

3. a = 0.05

4. t1 = 160

The above parameters were chosen arbitrarily, but meet all parameter
restrictions for a sigmoid model. Namely, h0 < h1, t1 > 0, and a > 0.

Next, we calculate the values of fsim(x) at 16 time points within the range
x ∈ [0, 300]. The range of x was also arbitrarily chosen, but closely resembles
real-world RNA-seq data. We calculate fsim(x) five times per x value, which
mimics taking multiple replicates at each time point. This process results in
a dataset resembling Table 3.1:

Sample x f(x)

1 0 0.25

2 0 0.25
...

...
...

80 300 302.74

Table 3.1: Example dataset before adding noise.
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To simulate noisy data, we generate a new column of our dataset, where each
value is drawn from a normal distribution centered at f(x), with a variance
of 100:

y ∼ N(f(x), 100)

For instance, consider the first row of the dataset. We generate a new
y value by randomly sampling from the distribution y ∼ N(0.25, 100). The
first row of our new dataset is shown in Table 3.2:

Sample x f(x) y

1 0 0.25 199.7

Table 3.2: Example of a noisy data point.

This process is repeated for all 80 rows, yielding a noisy dataset that sim-
ulates real-world experimental variation. Figure 3.1 illustrates the process of
simulating sigmoidal data and using the data to compare sicegar estimates
to the known generative parameters:
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Figure 3.1: Using a simulated dataset to compare sicegar estimated pa-
rameters (orange line) to the underlying model parameters (red line). Panel
(a) shows an initial function, where the parameters are set as described in
Equation 3.15. Panel (b) shows the noisy data generated from the function in
(a). Panel (c) shows sicegar’s estimated sigmoid model. Panel (d) shows a
direct comparison between sicegar’s model and the true, underlying model
of the data.

By introducing controlled randomness into the data while knowing the un-
derlying generative model, simulation provides a valuable way to assess the
accuracy of sicegar. Using simulated data, we were able to conduct a pre-
liminary analysis of sicegar estimates to determine what biases the package
introduced into parameter estimation.

First Round of Simulations

In order to obtain a baseline understanding of how well sicegar performs
when estimating sigmoid models, we ran a series of simulations to determine
whether there were any trends in the estimated parameters.

In Prof. Hardin and Fede’s earlier work, they determined that the onset
time of the single sigmoid function, t1, was repeatedly underestimated.
Figure 3.2 illustrates this trend:
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Figure 3.2: (Hardin & Domecq Lacroze, 2024) Data were simulated at three
dispersion levels (60, 180, 200) from an underlying model with parameters
h0 = 0, h1 = 750, a = 0.05, t1 = 160. Data was then run through sicegar

and the estimated onset time (t̂1) was extracted and plotted against the
true value of onset time. Onset time was typically underestimated across all
dispersion levels.

Our next step was to determine why these estimation errors/bias occur,
and whether or not we can manually improve sicegar estimates.

3.3.3 The h0 Problem

Although sigmoidalFitFunction returns parameter estimations for h1, t1,
and a, it does not include an estimation for h0. This is because the sicegar
optimization routine assumes h0 to be zero, and thus forces h0 to be zero
in all estimations. There are a number of drawbacks to this assumption.
Namely, forcing h0 = 0 prevents us from accurately modeling data in sicegar

where the true value of h0 ̸= 0. Forcing h0 = 0 can also influence the
estimation of our other key parameters. Figure 3.3 shows the results of
comparing estimations of parameters a, h1, t1 when forcing h0 = 0 in the
model approximation, versus letting h0 also be estimated as a parameter.
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Figure 3.3: We compared bias in parameter estimation using the LMA when
forcing h0 = 0 versus allowing the algorithm to fit h0. We simulated 100
datasets from the underlying sigmoid model f(x) = 100 + 750−100

1+e−0.05(x−160) and
estimated their parameters using the Levenberg-Marquardt algorithm in two
ways: (1) assuming h0 = 0, and (2) estimating h0 as its own parameter. The
estimation error for each parameter (p̂ − p) across all 100 models is plotted
along the x-axis for both approximation methods.

The estimation errors for the model with a fixed h0 are not centered at
0 as compared to the model with an estimated h0. On average, the biases
in parameter estimation were greater for those models whose h0 was fixed
at 0. In conclusion, forcing h0 → 0 when estimating parameters using the
LMA may cause unintentional biases in the estimation results of parameters
h1, a, t1. Therefore, moving forward, we modified sicegar to include h0 in the
model estimation process to eliminate any of the potential biases discussed
above. To do this, we altered the underlying sigmoidal function formula
(stored as sigmoidalFitFormula in sicegar) to follow the sigmoid function
described in Equation 2.2.
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Chapter 4

Simulation Results

4.1 Getting sicegar to work

In order to better understand the biases in sicegar’s estimation, our first
step was to determine whether or not we could get sicegar to estimate
t1 within a reasonable range. We were particularly interested in whether
the LMA introduced bias into our parameter estimations. No nonlinear-
least squares algorithm will be able to perfectly predict our parameters 100
percent of the time. However, we can run sigmoidal data directly through
the algorithm itself to see whether or not it produces any underlying biases
and to measure the variability of the estimates.

To get a better sense of how well the LMA performs, we stripped away
the majority of sicegar’s nested functions and simply ran our time-intensity
data through nlsLM, without normalizing our data beforehand. With the
addition of h0 into our sigmoidal model, this process returned the follow-
ing estimated parameters: h0, maximum, midPoint, slopeParam. We also
set our own hyperparameters (bounds & starting values, see Section 3.3.1)
rather than relying on the ones provided by sicegar. The purpose of these
simulations was to determine whether the LMA itself had any biases and
whether or not the package could work properly with some user-control.

We started with a very specific example:
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Estimating Parameters of a Single Sigmoid

Our goal was to estimate the parameters of Equation 2.2, where data were
generated from a single-sigmoid model with

h0 = 0, h1 = 750, a = 0.05, t1 = 160.

We started by creating four groups of simulated datasets. In each group-
ing, we held three parameters constant, and then iterated through sixty
reasonable values for the fourth parameter. For example, in Group 1, we
simulated sixty datasets where

h1 = 750, a = 0.05, t1 = 160,

and
h0 ∈ [0, 300].

This process allowed us to determine whether certain parameter combi-
nations broke the optimization routine (i.e., do really large h0 values make
it more difficult to estimate t1?), as well as to assess the overall accuracy of
sicegar estimates. Figure 4.1 shows the results of these simulations.
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Figure 4.1: These plots show how estimates of t1 from a single-sigmoid model
vary when one parameter is systematically changed. For each plot, we gener-
ated 60 datasets while holding three parameters constant at h0 = 0, h1 = 750,
a = 0.05, and t1 = 160, and varying the fourth parameter across the x-axis.
The orange points represent the estimated values of t1 from each individual
dataset, and the red dashed line marks the true value of t1.

Overall, sicegar was able to estimate t1 within a reasonable range. Ta-
ble 4.1 shows the proportion of datasets whose value of t1 was correctly
estimated across the four simulation groups, where we define a correct esti-
mation as being with 10-points of t1 in either direction. In each case, sicegar
correctly estimated the value of t1 well over 75 percent of the time.

Iterated Parameter t1 Accuracy

h0 0.93

h1 0.80

a 0.80

t1 0.98

Table 4.1: Preliminary accuracy results for t1 across different iterated pa-
rameters.
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However, when running these simulations, we paid careful attention to
set the hyperparameters as “perfectly” as possible. First, we set our starting
values at

h0 = 0, h1 = 750, a = 0.05, t1 = 160,

so that the starting guess for each parameter would be equivalent to the
true value of that parameter in at least three of the four cases. Secondly, we
set our bounds as

h0 = (−100, 1000), h1 = (0, 1000), a = (0, 1), t1 = (0, 500).

These bound settings ensured that the true value of each parameter was
between its upper and lower bound, but also made the bounds restrictive
enough so that the algorithm would be able to converge. Therefore, our next
step was to determine whether we could get sicegar to work in the general
case, where we did not have an underlying knowledge of the true structure
of our data.

4.2 Setting Hyperparameters on Normalized

Data

As mentioned in Section 3.1.1, sicegar normalizes time-course data on both
the x and y axes such that all values of x, y ∈ [0, 1]. This process allows
the package to set “universal” bounds and starting values so that the user
does not need to determine appropriate hyperparameters before estimating.
However, normalizing our data makes parameter estimations particularly sen-
sitive to hyperparameter settings. We were interested in how upper bound
and start values would influence the LMA’s ability to estimate the correct
sigmoidal parameters. We will outline the influence of hyperparameters on
estimation accuracy in the next two sections.

Before adjusting the default hyperparameters in sicegar, we explored the
optimization behavior of our single sigmoid function. Specifically, we plotted
the sum of squares errors (SSE) across various parameter combinations. SSE
is a statistical metric used to evaluate how accurately a posited model with
parameter vector β fits some data. Specifically, SSE measures the total sum
of squared differences between n observed and predicted data points:
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SSE =
n∑

i=1

(yi − f(xi, β))
2 (4.1)

To better understand the optimization behavior of the single sigmoid, we
plotted SSE for four simulated datasets (simulated from the same parameters
h0 = 0, h1 = 750, a = 0.05, t1 = 160, with 5 replicates for 20 time
points between 0 and 300) across 8470 combinations of the parameter vector
β using the following parameter ranges:

1. h0 ∈ [0, 1]

2. h1 ∈ [600, 900]

3. a ∈ [0.01, 0.1]

4. t1 ∈ [100, 200]

These ranges were centered around the true, generative parameter value
for each parameter. For each combination of h0, h1, a, t1, we calculated∑80

i=1(yi − f(xi, (h0, h1, a, t1)))
2. Figure 4.2 shows the results of these simu-

lations for one of the four datasets:
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Figure 4.2: Each point represents a unique parameter vector β =
(h0, h1, a, t1), with values for t1 along the x-axis, values for h0 along the
y-axis, values for a along the upper grid, and values for h1 along the grid
on the right. The color of each point represents the SSE, or the total sum
of squared differences between the true and estimated data points across all
80 data points. Darker colors correspond to a lower SSE, and lighter colors
correspond to a lower SSE. SSE was plotted on a log scale.

Local optimization behavior is marked by dark regions (low SSE) of a
heatmap surrounded by lighter regions, indicating a potential minimum in
that neighborhood of parameters, but not across the entire grid. In general,
this heatmap does not show any clear signs of local minima, since a majority
of the dark regions are concentrated towards the edge of each sub grid of
parameters. However, we can see for values a = 0.03, 0.04 and h1 = 700, 750
that there are small clusters of darker regions surrounded by slightly lighter
regions, which could be a potential concern when fitting models to our data.
Additionally, for low values of a and h1, our plot displays “flat” regions where
there is a relatively constant SSE level. These regions could potentially cause
the optimizer to stall or entirely miss the global minimum of our objective
function.

For all four simulated datasets, we compared the parameter vector β asso-
ciated with the lowest SSE to the true parameter values, and determined how
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far apart the lowest SSE was to the “truth” SSE. Note that for all datasets,
the true parameter values were h0 = 0, h1 = 750, a = 0.05, t1 = 160.

β = (h0, h1, a, t1) Log SSE True Log SSE

(40, 750, 0.06, 170) 13.33 13.42

(0, 700, 0.06, 160) 13.72 13.73

(0, 750, 0.05, 160) 13.44 13.44

(20, 750, 0.06, 170) 13.60 13.63

Table 4.2: Comparing lowest SSE to SSE associated with true parameter
values across four simulated datasets.

As shown in Table 4.2, the parameter vector associated with the lowest
SSE was typically close to the true parameter vector for all four datasets.
Additionally, the lowest log SSE value was never more than 0.1 points away
from the SSE value associated with the true parameters. Therefore, based on
this small simulation, we were not too concerned with getting stuck in local
optima when minimizing our objective function across this parameter grid.
Although it may be beneficial to use multiple starting values to estimate
model parameters, the the Levenberg–Marquardt algorithm (LMA) relies
on a single starting point for parameter estimation. Thus, we first sought
to explore how different hyperparameters influence the outcomes of LMA
estimation.

4.3 Manipulating Upper Bounds

In order to determine whether the upper bound hyperparameter had an influ-
ence on LMA-parameter estimation, we ran simulated data through various
upper-bound values and compared the estimated parameters to the genera-
tive parameters of our model.

We started by simulating 20 datasets using the same generative parame-
ters:

h0 = 0, h1 = 750, a = 0.05, t1 = 160.

We then set a reasonable range for the upper bound of each parameter.
The lower end of the range was the default starting value in sicegar, and
the upper end of the range was the default upper bound in sicegar:
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Parameter Range
h0 [0, 2]
h1 [1, 1.5]
a [1, 180]
t1 [0.33, 1.15]

Table 4.3: Upper Bound Values for LMA Estimation

We generated 3750 unique upper bound combinations by iterating through
each range, and ran our 20 simulated datasets through the LMA using each
individual combination. We extracted ∇p = |p − p̂| for all four parame-
ters, and averaged that value across 20 datasets. Estimating the sigmoidal
model for data under numerous upper bound combinations gave us a sense
of whether a particular upper bound combination yielded a more or less ac-
curate estimation result. We wanted to directly compare estimations across
all four parameters, since our intuition was that parameter estimations were
intertwined. Figure 4.3 displays the results of these simulations:
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Figure 4.3: Each point represents a unique upper bound combination, with
the x-axis iterating through t1 upper bound values, the y-axis iterating
through h0 upper bound values, the grid across the top iterating through
a upper bound values, and the grid along the right side iterating through h1

upper bound values. The color of each point displays how close we were to
correctly estimating one parameter: (a) t1, (b) a, (c) h0, and (d) h1. Lighter
colors indicate a more accurate fit, and darker colors indicate a less accurate
fit.

Looking specifically at ∇t1, in Figure 4.3 (Plot (a)) we observe that both
the slopeParam (a) Upper Bound and Maximum (h1) Upper Bound do not
have a large impact on t1 estimation past a certain threshold. Once the
slopeParam (a) Upper Bound is larger than 1, each individual square in the
grid looks fairly alike. Similarly, once the Maximum (h1) Upper Bound jumps
from 1 to 1.125, we see a similar structure to each individual square. How-
ever, the combination of MidPoint (t1) Upper Bound and h0 Upper Bound
proved to be highly influential on ∇t1. Specifically, we can see that when the
MidPoint (t1) Upper Bound is just below or just above 0.5, we have worse
fit (darker colored points). However, as both the Midpoint (t1) and h0 upper
bounds increase (top right corner of each individual square), we can see that
our fit of t1 improves, which indicates that larger upper bound values allow
for more accurate fitting. We also need to set the slopeParam (a) Upper
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Bound fairly liberally (much greater than 1) in order to get the improved fit
when increasing the MidPoint (t1) and h0 Upper Bounds.

We can simplify Plot (a) to examine whether or not t1 was overestimated,
underestimated, or approximately correct at each combination. Figure 4.4
shows this simplified version of Plot (a) of Figure 4.3, where we defined
overestimating t1 as a value > 170, underestimating t1 as a value < 150 and
correctly estimating t1 as a value ∈ [150, 170] (keeping in mind that the true
value of t1 is 160).

Figure 4.4: Each point represents a unique upper bound combination, and the
color indicates whether t1 was overestimated, underestimated, or correctly
estimated.

As expected, t1 is underestimated when the MidPoint (t1) Upper Bound is
lower than the true value of t1 in normalized space. t1 is estimated accurately
when our MidPoint (t1) Upper Bound is set to the approximate true value of
t1, and for some combinations of larger MidPoint (t1) and h0 Upper Bounds,
and is overestimated in most cases when the MidPoint (t1) Upper Bound is
greater than the approximate true value of t1.

As mentioned, we were interested in how intertwined the estimations
across different parameters were: for example, if t1 was correctly estimated,
did that mean that the estimations for a, h0, h1 were also fairly accurate?
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Most notably, the fit of all parameters deterioriates when the upper bound
for a is set to be too low (i.e., when the upper bound of a is set to 1).
Although it is less apparent, the fit across all parameters also deteriorates
when the Maximum (h1) Upper Bound is equal to 1. This deterioration
is most noticeable when estimating h1 and a, but the proportion of closely
estimated t1 and h0 values also decreases when the Maximum (h1) Upper
Bound is too small.

Interestingly, when MidPoint (t1) Upper Bound is approximately equal
to 0.5, we get an accurate fit of t1, shown by the pale line in each square
at x = 0.5. We hypothesized that this increased accuracy may be because
the true value of t1 = 160 is approximately 0.5 in normalized space (since
160
300

= 0.53), and therefore capping the upper bound at 0.5 forces t1 to be
correct.

Given our finding that t1 was most accurately estimated when we set our
upper bound to be the approximate true value of t1, we tested two additional
t1 values and ran the same simulation procedure to see if this finding would
hold.

4.3.1 Setting t1 to 220

We first generated our datasets setting t1 = 220, so we had the following
generative parameters:

h0 = 0, h1 = 750, a = 0.05, t1 = 220.

Note that the normalized value of t1 is 0.73. We then repeated the same
procedure to extract the average of ∇p = |p− p̂| across 20 datasets, and plot
this value for all 3750 parameter combinations. Figure 4.6 shows the results
of this simulation.

45



Figure 4.5: Each point represents a unique upper bound combination. All
parameter values are the same except for t1, which now equals 220, which is
0.73 in the normalized space.

In Plot (a), we see that the pale line has shifted to approximately x = 0.75,
which is close to the value of 220

300
= 0.733. The shift in t1 estimation accu-

racy supports our hypothesis that setting the MidPoint (t1) Upper Bound
approximately equal to t1 forces the estimation to be more accurate. How-
ever, we also noticed that for this t1 value, we no longer get an improved fit
in the upper right corner of each square (where we maximize both MidPoint
and h0 Upper Bounds). The fit of all other parameters (Plots (b) - (d)) ap-
pears fairly similar, with the exception of h1, which is consistently estimated
incorrectly by around 100 points.
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4.3.2 Setting t1 to 90

Figure 4.6: Each point represents a unique upper bound combination. All
parameter values are the same except for t1, which now equals 90.

While setting t1 = 220 seemed to support our intuition, setting t1 = 90 did
not yield the expected results. Rather, the estimation of all parameters im-
proved across the majority of upper bound combinations, with the exceptions
of setting slopeParam (a) Upper Bound to 1 and the Maximum (h1) Upper
Bound to 1. Additionally, for smaller upper bounds of h0, we can observe
a worse fit. This improved estimation may have something to do with the
structure of the sigmoid model at this particular parameter combination,
which we did not investigate in this project.

4.4 Manipulating Starting Values

The second set of hyperparameters we were interested in was the set of start-
ing values, which are the first guess the LMA makes when estimating the
parameters of our sigmoid model. In sicegar, the default starting values
are:

h0 = 0, h1 = 1, a = 1, t1 = 0.33.
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Whereas h1 and t1 both seem like reasonable starting estimates for their
respective parameters in normalized space, the starting value a = 1 stood out
as being extremely low. Especially given the poor fit all of four parameters
when setting the slopeParam (a) Upper Bound to 1, we hypothesized that a
larger starting value for a might yield more accurate results.

Therefore, we ran the same initial simulations (as shown in Figure 4.3)
but set a new starting value for a :

h0 = 0, h1 = 1, a = 15, t1 = 0.33.

We set the starting value a = 15 since we know that our actual slope
parameter a = 0.05 is approximately equal to 15 in normalized space. Fig-
ure 4.7 shows the results of this simulation.

Figure 4.7: Each point represents a unique upper bound combination, now
with the starting value for a = 15.

The estimation of all parameters improved drastically after altering the
starting value of a from 1 to 15. When both the slopeParam (a) and Maxi-
mum (h1) Upper Bounds were set larger than 1, the combination of a higher
midPoint and h0 upper bound consistently lent itself to accurate estimations
of all four parameters. The drastic improvement in estimation accuracy in-
dicates that starting values are highly influential on the LMA’s ability to
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accurately estimate onset time, and requires further exploration. Since we
were able to set the starting value a = 15 from our omniscient perspective
on the data, it may be fruitful to manually set LMA starting values based on
approximations from the data. We will discuss potential avenues to address
the omniscience quandry in more detail in the next chapter.
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Chapter 5

Conclusion and Future
Directions

RNA-sequencing (RNA-seq) data provides a snapshot of the RNA abundance
associated with a particular gene in a biological sample. Adams et. al (2023)
collected RNA-seq data to determine how E. coli cells alter their gene ex-
pression patterns in response to various environmental stressors and were
particularly concerned with comparing the onset time of RNA abundance
across stressors and gene types. In order to extract onset time, Adams et. al
(2023) used sicegar, an R package that fits sigmoidal models to time course
data [5]. In this thesis, we investigated how reliably sicegar was able to
estimate the onset time of RNA abundance using data simulated from an
underlying sigmoid model, where we knew the true parameter values before-
hand. We identified potential roadblocks in the parameter identifiability of
sigmoid models, as well as biases in the Levenberg-Marquardt Algorithm.

In conclusion, we found that both the upper bounds and starting values of
the Levenberg-Marquardt Algorithm highly influence our ability to estimate
the parameters of a single sigmoid model. When we set our hyperparameters
directly from the data, such as setting the starting values to the true pa-
rameter values, and ensuring our bounds include the true parameter values,
we can get sicegar to work with high accuracy across a variety of parame-
ter combinations. However, real-life applications of sicegar require working
with data for which we do not already know the underlying structure. There-
fore, our goal was to find a way to expand our ability to accurately estimate
onset time without having an omniscient perspective.

Therefore, per sicegar’s embedded structure, we worked with data nor-
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malized to the [0, 1] scale on both the x and y axes. We found that when
working with normalized data, our estimations became extremely sensitive
to hyperparameters. When we set the upper bounds of all four parameters
liberally, we were able to accurately estimate t1 a majority of the time. How-
ever, small adjustments in upper bound values led to large discrepancies in
parameter estimations. For example, when h1 is set to 1 rather than 1.125,
our estimation of a, h1, h0 worsens, despite the fact that the true value of
h1 < 1 in normalized space. Although there is no clear rule for setting up-
per bound values that guarantee correct estimations 100% of the time, we
found that using a combination of high MidPoint (t1) and h0 upper bounds
generally lead to accurate estimates—provided that the slopeParam (a) and
Maximum (h1) upper bounds are also set above certain threshold values.

We also found that the estimation process worked particularly well when
we set the starting value of our slope parameter a to be almost equal to
the true value of a, which was around 15. Therefore, we believe there are a
number of future directions this project can take to explore the influence of
starting values more closely. First, we believe it would be fruitful to alter
the LMA, or use another non-linear least squares estimation technique, to
look over a large space of starting values before beginning the optimization
routine. Additionally, we propose working with un-normalized data, but
altering the default settings of the start values to be drawn directly from the
data. For example, we could approximate the start values from a dataset as
follows:

1. h1 : mean of the three highest y values

2. h0 : mean of the three lowest y values

3. t1 : mean/median of x values, potentially where f(x) starts increasing
rapidly

4. a : slope from the local regression on data points right above and below
t1

Setting starting values from the data is one potential solution to finding
more accurate starting values before the optimization procedure begins, and
we recommend testing this procedure out as a next step to improving sicegar
estimates. Once we have a better understanding of parameter estimation in
the sigmoid model, we believe it would be fruitful to expand our analysis
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to the double sigmoid model, where the difficulty in parameter estimation
increases due to the distinction between t1 and onset time. We hope that
this thesis provides a helpful framework to continue investigating sicegar

biases, with the goal of providing tangible suggestions to sicegar users.
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