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Abstract

A permutation test is a hypothesis test to determine how likely an ob-
served statistic is to come from a null population. In the regression setting,
permuting a single covariate (here, “näıve permutation”) can create a null
relationship between that covariate and the response variable. But there’s a
catch: while permutation tests are useful for simple linear regression (SLR),
their application in multiple linear regression (MLR) is more complex than
permuting a single explanatory variable, one at a time. When permuting a
single explanatory variable in a MLR model, exchangeability is not preserved
unless the variables are independent: the distribution of our permuted vari-
able is not maintained as we randomize it. While current literature serves
to inform alternative permutation structures (as opposed to näıve permut-
ing), there lacks sufficient insight quantifying and understanding the degree
to which näıve permutation tests are problematic.

We have conducted extensive simulations on multiple approaches to per-
mutation tests in the MLR setting. By varying the model structure, effect
size, and sample size, we take a deep dive into understanding various permu-
tation method results in terms of type I error and power. Additionally, we
vary whether the model is correctly specified or mis-specified, an additional
nuance which informs the variability in error rates that are observed.
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Chapter 1

Statistical Inference

Statistical inference tests begin with a research question. In the case of
hypothesis testing, here, permutation tests, the motivating question inquires
about the relationship between two quantitative variables. Throughout this
paper, the question pertains to the presence (or lack) of a linear relationship
between the response variable, Yi, and one of the explanatory variables, xi2,
in the multiple linear regression model:

Yi = β0 + β1xi1 + β2xi2 + εi

Above, β0 denotes the intercept, β1 and β2 are partial regression coefficients,
xi1 is another explanatory variable, and εi are the true errors. The test se-
lected to draw inferences about the linear correlation between Yi and xi2 is
the permutation test. Historically, permutation test procedures were inacces-
sible, cumbersome, and computationally intensive [Küchler, 1999]. However,
given their demonstrated robustness in simple linear regression applications
and the advancements of modern computing, this paper will advocate for
their use. In particular, it will support their extension to multiple linear
regression, and quantify their shortcomings in multiple linear regression.

In the permutation tests described here, the test statistic calculated is the
t-statistic, which is a choice that will be motivated in the literature section.
The hypotheses from which conclusions will ultimately be drawn are:

Ho : β2 = 0

Ha : β2 6= 0

The null hypothesis, Ho, asserts there is no linear relationship in the pop-
ulation between Yi and xi2. The alternate hypothesis, Ha, concludes the
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opposite. Using both observed and permuted t-statistic, a conclusion about
the hypotheses is made. Conceptually, if there is no linear relationship be-
tween Yi and xi2 in the population, the slope corresponding to xi2 in the
multiple regression model is zero (hence β2 = 0).

1.1 Permuting in Simple Linear Regression

Before beginning discussion of permutation tests on multiple linear regression
models, it’s important to understand their applicability to simple linear re-
gression. Because of the robust nature of the permutation test to non-normal
data, it is extremely useful in applications of simple linear regression mod-
els. The ultimate goal of this simulation study is that this usefulness can be
transferred to multiple linear regression, where more than one explanatory
variable is present and there may/may not exist a dependency between the
X variables themselves.

1.1.1 Advantages of Permutation Tests

Permutation tests require fewer assumptions about the data than ordinary
least squares (OLS). They do not need data or errors to be normally dis-
tributed and are useful for any distribution. Moreover, they can draw infer-
ences from small samples sizes. Permutation tests are exact if you perform n!
permutations, one for every possible reordering of the data.It can however, be
computationally intensive to calculate all n! orderings of observations within
a sample. If n is quite large, a substantial, yet smaller, subset of n is used
such that m < n!. With so many combinations of data, inferences drawn
from a permutation test that uses m shuffles is approximately exact, though
cannot be truthfully called an exact test. With each shuffling of the data, a
different data set is obtained. As values are reassigned, each reordering of
the data is a potential outcome in the population. Permutation tests take
into account every single possible ordering of data given the observed sample
if n! permutations are performed.

1.1.2 Type I Error Rate

The motivation for permutation tests is to create a process for differentiat-
ing between the null and alternate hypotheses such that type I error rate
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is controlled. Again, this can be done approximately with m < n! shuffles,
or exactly with n! permutations of the sample. The inference test then uti-
lizes the sample of observations to draw conclusions about the behavior of
the true population. The results will lead one to either reject the null hy-
pothesis, or fail to reject the null hypothesis. In the first case, the alternate
hypothesis (Ha) is accepted. In the second, we fail to accept the alternate
hypothesis (Ha), and fail to make any conclusions about the hypotheses.
These conclusions are drawn in terms of our hypotheses, though sometimes
the conclusions are incorrect. If the inference test of the sample leads us to
conclude there is a relationship between Yi and xi2 and there is in fact no
linear correlation between the two variables in the population (i.e., the null is
true and it is rejected), then the wrong conclusion has been drawn. This rate
of false positivity is referred to as the type I error rate, and inference tests
aim to control it at a set value, typically α = 0.05. Since permutation tests
consider every rearrangement of the data, or at least do so approximately,
they have the ability to fix the type I error rate at α ≤ 0.05. Consequently, a
permutation test in simple linear regression falsely rejects the null hypothesis
no more than 5% of the time.

1.1.3 Permutation Test Assumptions

Permutation tests require fewer assumptions than other inference tests, al-
though they still necessitate certain requirements of data. In particular, the
errors in the simple linear regression model must be independent and identi-
cally distributed (iid). This is typical for all inference tests, though normal
distribution of the error terms is an additional requirement for OLS. The
residuals in the sample must not influence each other (independence) and
come from the same distribution (identically distributed), though a distri-
bution is not specified. Permutation tests also require exchangeability. This
ensures the distribution of the permuted variable will be maintained as it is
randomized.

Definition 1.1. Exchangeability: The distribution of the permuted variable
is maintained as it is randomized [Aldous, 1985].
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1.1.4 Power

Opposite of a false positive (type I error), is a false negative. A type II
error rate occurs when the inference test suggests the null hypothesis not
be rejected for the sample though it is false in relation to the population.
If a relationship is not found between Yi and xi2 where one exists in the
population (i.e., we don’t identify a relationship given the null hypothesis is
false), this is a type II error. Conversely, power is the probability of rejecting
the null hypothesis when the alternate is true:

Power = 1− P (type II error rate)

Although power cannot be controlled, the analyst still hopes for a test with
large power. Power is an important measurement of how well an inference
test performs, and will be used to compare various permutation methods
throughout this paper.

1.1.5 A Permutation Test for a SLR Model

First a basis is provided for the inference test in the simple linear regression
case: Given a data set with one explanatory variable to which a linear model
has been fit, a permutation test can inquire about the linear relationship
between the response variable Yi and the explanatory variable xi1. Before
starting, a significance level will be set at α = 0.05. Assumptions to be made
are:
1. Exchangeability
2. Errors are iid,
Also, hypotheses will be stated as follows:
Ho : β1 = 0
Ha : β1 6= 0,
In the above assignment of the null hypothesis, Ho claims there is no linear
relationship between the variables of interest, while the alternate hypothesis
(Ha) claims there is. Given the simple linear regression model:

Yi = β0 + β1xi1 + εi

where Yi has been regressed on xi1, β0 is the intercept of the line, β1 is the
slope of the line, and εi is the errors, the permutation procedure can begin.

To inquire about the linear relationship between Yi and xi1, the permuta-
tion test proposes a shuffling all observations associated with either variable
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xi1 or xi2. First, a t-statistic is calculated for the raw, observed unshuffled
sample:

tref =
b1

se(b1)

in which b1 is the sample estimate of the population parameter, β1, and se(b1)
it its standard error. Next, either the Yi or the xi1 values are permuted. For
this context, the xi1 values will be shuffled, but note the results would be the
same because either way, all response values will be reassigned to permuted
xi1 values. For each permutation, the data is reordered and a new linear
model is fit:

Ŷi = b∗0 + b∗1xi1

for which a “*” indicates a permutation has been performed, so this is not the
original fit, nor the original order of the data. Additionally, a new t-statistic
is calculated for each shuffle of the data:

t∗ =
b∗1

se(b∗1)

After a large number of permutations (m < n! if all n! permutations are
too computationally intensive), a distribution of t∗ values is achieved (one
t∗ value for each permutation results in a distribution of t∗ values). The
original observed tref value for the sample is then placed in the distribution
of many t∗ values. If the proportion of |t∗| values greater than or equal to
|tref | is smaller than the predetermined critical level, α = 0.05, then the null
hypothesis is rejected. There is a significant linear relationship between Yi
and xi1, thus it’s concluded β1 6= 0.

In summary, permutation tests operate much like other inference tests.
They answer a question about a linear relationships between variables in a
data set. Using these tests, conjectures can be answered about the behavior of
the population from which the sample comes. More specifically, permutation
tests infer how likely our observed data is to occur in the population by
comparing the response variable to every possible rearrangement of itself.
The inference test quantifies each possible sample using a test statistic, and
measures the likelihood of occurrence of our original observed data with a p-
value (the aforementioned proportion). Whether this p-value is less than or
equal to a significance level α gives a statistician information about the rarity
of the observed data under the null hypothesis, and leads to a final conclusion
of one of the two hypotheses. With a slew of advantages and demonstrated
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reliable performance, permutation tests are a pragmatic method of statistical
inference test for simple linear regression models.
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Chapter 2

Permutation Tests in Multiple
Linear Regression

Multiple linear regression introduces multiple explanatory variables into the
OLS model. Whereas previously, in simple linear regression models, only xi1
was present, multiple linear regression allows for xi1, xi2, ..., xip explanatory
variables where p ∈ N. For the purposes of simplicity and comprehension,
this paper will consider the multiple linear regression model:

Yi = β0 + β1xi1 + β2xi2 + εi

which is only concerned with two explanatory variables, xi1 and xi2.
If the goal is to use a permutation test to assess the significance of the

linear coefficients, this model immediately raises a pertinent question: which
variable should be permuted? While this decision can be informed by the
motivating question of the inference, permuting only the variable of interest
(as in SLR) fails to recognize the covariate relationships which are poten-
tially present between the multiple explanatory variables. It is unknown
whether Yi and xi1, Yi and xi2, or xi1 and xi2 are correlated. Permutation
of any of the individual variables will disrupt these relationships, if present,
and consequently prove problematic for inquiries into their relatedness. This
paper discusses how a statistician might inquire about one variable without
disrupting the covariate relationships, using a permutation test. This paper
will concern itself with how to isolate xi2 to test for a relationship with yi
without the influence of possible dependency on xi1. Three methods of per-
mutation are discussed in the following chapters, including the advantages
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and pitfalls of their respective procedures and results. Ultimately, a simula-
tion study is presented which not only reproduces results found in literature,
but quantifies the deviation of each method from the standard test (the t-
test) for an extensive variety of partial regression coefficients, distributions,
sample sizes, and covariance structures.

Before beginning an extensive literature review on permutation approaches,
this paper presents a summary table of the methods, as well as key differ-
ences between them. Going forward, the permutation methods are referred
to either by their assigned number (1a, 1b, 2, or 3), or by their seminal
author.
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Permutation
Method:

1a 1b 2 3

Author:
Freedman and
Lane

ter Braak Oja Manly

Linear Model
Fit:

y ∼ xi1 + xi2 y ∼ xi1 + xi2 y ∼ xi1 + xi2 y ∼ xi1 + xi2

Values
Recorded:

• OLS p-
value

• OLS t-
statistic

• b2

•
Ryi|xi1xi2

• fitted
values
for yi ∼
xi1 + xi2

• OLS p-
value

• OLS t-
statistic

• b2

• Ryi|xi1

• fitted
val-
ues for
yi ∼ xi1

• OLS p-
value

• OLS t-
statistic

• b2

• OLS p-
value

• OLS t-
statistic

• b2

Permuted
Variable:

Ryi|xi1xi2
Ryi|xi1

x2 y

Permuted
Linear Model
Fit:

R∗yi|xi1xi2
+ b0 +

b1xi1 + b2xi2 ∼
y

R∗yi|xi1
+ b0 +

b1xi1 ∼ y + xi2
y ∼ xi1 + x∗i2 y∗i ∼ xi1 + xi2

Values
Recorded:
(for each
permutation)

b∗2, se(b∗2) b∗2, se(b∗2) b∗2, se(b∗2) b∗2, se(b∗2)

Test Statis-
tic: t∗ =

b∗2−b2
se(b∗2)

t∗ =
b∗2−0
se(b∗2)

t∗ =
b∗2−0
se(b∗2)

t∗ =
b∗2−0
se(b∗2)

P-value Cal-
culation:

∑
|t∗|

nshuffle
> |b2|

∑
|t∗|

nshuffle
> |b2|

∑
|t∗|

nshuffle
> |b2|

∑
|t∗|

nshuffle
> |b2|

Table 2.1: This table summarizes the permutation methods to be discussed
in later sections, as well as the differences which distinguish them from each
other during their application.
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2.0.1 Exchangeability

To maintain exchangeability, a critical assumption for permutation tests, the
distribution of the permuted variable must be the same for every permu-
tation under the null hypothesis and the original distribution of the data.
When outliers exist in the data, exchangeability is violated with each shuf-
fle of the response variable, as the outlier of the y-value associated with
the x-value prevents each permutation from being distributed identically
[Anderson and Robinson, 2001]. Anderson and Robinson (2001) use the lack
of exchangeability in the outlier of the y-value to argue that the presence
of an extreme outlier inhibits the permutation of Yi values from providing
an approximate test. The exchangeability of units under the null hypothesis
such that the distribution of the permuted variable is maintained as it is ran-
domized is among the most important aspect of the technical assumptions
for an approximate permutation test [Anderson and Robinson, 2001].

2.1 Test Statistic

Without independence across the explanatory variables, it is extremely diffi-
cult to inquire and draw conclusions about a sole covariate in relation to the
response using the permuted variable. All permutation methods discussed in
this paper are compared via a t-statistic. The reason being, the t-statistic is
a pivotal statistic which is not influenced by variables it is not designed to
test.

Definition 2.1. Pivotal: A test statistic is considered pivotal if it has no
reliance on unknown quantities. This means the probability distribution of
the statistic only relies on parameters available [for Statistics Education, ].

The t-statistic is calculated only in relation to the estimate of our pa-
rameter of interest, β2, and the standard error of the associated statistic. In
doing so, the t-statistic will remain unaffected by additional variables in the
multiple regression model, such as xi1, or any other linear combination of
variables (apart from xi2), since the calculation of the t-statistic only consid-
ers the parameter of interest [Manly, 1997].

A non-pivotal statistic such as the slope coefficient bi is influenced by a
non-zero fixed constant when the response variable is permuted. The use
of a non-pivotal statistic in permutation testing leads to an inflation of the
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test statistic itself and a decrease of the type 1 error rate, as confirmed in
simulations [Anderson and Robinson, 2001] and [Kennedy and Cade, 1996].

To diminish the inflation and inaccuracy effects of the non-pivotal statis-
tic, this paper proposes the use of a pivotal statistic previously discussed and
a change of hypotheses. Additionally, in order to compare various permuta-
tion methods, our hypotheses and statistics must align.
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Chapter 3

Permutation of the Response
Variable

A straightforward approach to permutation tests in multiple linear regression
(MLR) entails permuting the response variable, Yi [Manly, 1997]. Begin with
a model:

Ŷi = β0 + β1xi1 + β2xi2 + εi

which regresses Yi on xi1 and xi2 together. OLS is used to generate estimates
of β1 and β2: b1 and b2 [Anderson and Legendre, 1999].

A considerable challenge associated with permuting the response variable
is the difficulty in drawing inferences regarding the relationship between Yi
and solely xi1 or xi2 when there exist dependence between the two covariates
[Manly, 1997]. Permuting Yi preserves the relationship between xi1 and xi2,
should one be present. However, it is only possible to ask questions which
pertain to both covariates.

3.0.1 Procedure 3

The hypotheses are as follows:

Ho : β1 = β2 = 0
Ha : Either : β1 6= 0, β2 6= 0, or both do not equal zero.

Notice for the above hypotheses, one can only test whether there is no
relationship between the covariates and Yi, versus some relationship exists.
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No information provided can conclude whether the linear relationship is be-
tween Yi and xi1, Yi and xi2, or all three variables. If the p-value on the
b2 coefficient is smaller than α = 0.05, one concludes there is some linear
relationship between the covariates and Yi such that βi1 and βi2 aren’t both
zero, i.e., that the null hypothesis is rejected. Because the focus is on the
β2 parameter, the choice of statistic (b2) will make the test more sensitive to
null deviations of the form β2 6= 0 than null deviations of the form β1 6= 0.
However, it is imperative to remember the permutation set-up includes both
parameters to be set to zero.

After establishing hypotheses, permute the response variable such that
all Yi values are shuffled and reassigned to new xij values, and observe the
change in calculations of the chosen statistic(s) while keeping variables xi1
and xi2 unpermuted [Anderson, 2001]. The model becomes:

Y ∗i = b∗0 + b∗1xi1 + b∗2xi2

where Y ∗i denotes the permuted response variable. Y ∗i is then regressed
on the unpermuted xi1 and xi2 again to obtain new estimates of b1 and
b2, b

∗
1 and b∗2. The original b2 is observed in the distribution of b∗2, and

generate a p-value based on the proportion of absolute values of b∗2 found
to be greater than or equal to b2 [Anderson and Legendre, 1999]. If smaller
than the predetermined critical value (typically α = 0.05),the null hypothesis
is rejected.

Furthermore, inference testing by shuffling of Yi has been criticized when
some of the remaining X variables have a relationship with Yi as an approx-
imate test rather than an exact permutation test [Kennedy and Cade, 1996].
Manly (1997) agrees with this assessment of randomizing observations, though
many randomization methods are approximate in the multiple linear regres-
sion model, with some outperforming others under different technical con-
ditions. Notably, permuting the response variable is exact when the responses
(yi values) are independent of the xij variables [Anderson and Robinson, 2001].
For a test of partial regression coefficients, if the sample size n < 10 and there
are no outliers in the covariables, unrestricted permutation of Yi is recom-
mended [Anderson and Robinson, 2001].
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3.0.2 Success of the Permutation of the Response Vari-
able

Simulations have been carried out to observe different data structures, though
results of these simulations point to a necessity for more extreme techni-
cal conditions, such as major prohibiting outliers or heavily skewed errors
[Manly, 1997]. In Manly’s (1997) simulation experiment, errors were chosen
from a highly non-normal distribution (exponential to the third power), a
large outlier was included in the observations, and observations for each co-
variate were chosen from two uniform distributions with different parameters.
Permutation of Yi values was found to be particularly strong at controlling
the type 1 error rate at 5% under the null hypothesis in comparison with
t- and F-distributions, as well as randomizing residuals. However, permut-
ing the response variable underperformed in terms of power when compared
to the t- and F-distributions. Out of 70,000 tests simulated, roughly 15%
more tests were significant using the t- and F-distributions (58.88%) than
randomizing observations (43.1%).

3.0.3 Discussion

Anderson and Legendre (1999) note in their simulation study there is no
difference in power amongst permutation of residuals and permutation of Yi
values. In a different simulation experiment done by Anderson and Robin-
son (2001), permutation of the response variable produced a de-stabilized
type 1 error rate when the covariate X contained an outlier and with either
extremely normal or non-normal errors, more so than the randomization
of residuals. Conceptually, a large outlier in the data has the ability to
heavily influence the partial correlation coefficient relative to the variable
being tested, depending on its severity. Under permutation of the response
variable, this outlier will be associated with a different Yi after each shuffle
[Anderson and Robinson, 2001].

When the variables in the regression model are uncorrelated, inferences
about the relationship between Yi and xi1 or Yi and xi2 are much more
feasible. Still, in order to easily compare the significance of the t- and F-
distributions against randomizing observations, the Yi observations must be
randomly assigned to the xij observations. A random assignment of Yi values
to xij values is one key justification for permutation method 3, since it sug-
gests that Yi is independent of xij and therefore any Yi observation is equally
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likely to occur with any set of xij observations. [Manly, 1997].
Under permutation of the response variable, we propose a null hypothesis:

Ho : β2 = 0

This hypothesis is problematic for the aforementioned possibility that β1 6= 0.
However, should β1 = 0, it is easy to test the proposed null hypothesis. The
procedure will remain the same as described above, though a t-statistic will
be calculated for the unpermuted dataset, as well as for each permutation of
the dataset. For the unpermuted data under the model:

Ŷ ∗i = b∗0 + b∗1xi1 + b∗2xi2 + εi

the following t-statistic will be calculated:

tref =
b2

se(b2)

where tref refers to the reference value for the observed data. After permu-
tation of the response variable, a permuted t-statistic will be calculated from
the model

Y ∗i = β0 + β1xi1 + β2xi2 + εi

The permuted t-statistic will be denoted

t∗ =
b∗2

se(b∗2)

This process of permutation and t∗ calculation is repeated until there exists a
distribution of t∗ to which the singular value for tref can be compared. Just
as described previously, a p-value is calculated and if less than 5% of |t∗|
fall above |tref | in the distribution, the null hypothesis is rejected. In other
words, we fail to observe a linear relationship between Yi and xi2.
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Chapter 4

Permutation of the Residuals

Both Freedman and Lane (1983) and ter Braak (1992) have proposed a per-
mutation tests which shuffles the residuals in a multiple linear regression
model. The former has been dubbed permutation of the residuals under
the reduced model; the latter is known as permutation under the full model.
Both are similar in their procedures, though slight differences lead to demon-
strated differences in power, though theoretical solutions are still needed to
provide confirmation of the superiority of one of the methods with respect
to power [Anderson and Legendre, 1999].

4.1 Under the Reduced Model

Before inference testing, permutation method 1a requires two conditions be
met [Anderson and Legendre, 1999]. First, the data cannot contain extreme
outliers. As discussed in the previous section, the presence of extreme outliers
can be highly problematic. Second, xi1 and xi2 cannot be highly collinear.
A highly linear relationship between these two variables will likely influence
hypothesis testing regarding the relationship between xi2 and Yi.

4.1.1 Procedure 1a

When permuting under the reduced model, the null hypothesis:

Ho : β2 = 0

is assumed to be true. Given there is no linear relationship between Yi and
xi2 under Ho, performing a permutation of the residuals tests the validity of
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this assumption. Note, a non-linear relationship, or no relationship at all,
between Yi and xi2 would reduce our multiple linear regression model from:

E(Yi) = β0 + β1xi1 + β2xi2

to:
E(Yi) = β0 + β1xi1

Permutation test 1a begins the same as when permuting the response vari-
able, which regresses Yi on xi1 and xi2 together. Again, the focus is on β2 (b2)
and the t-statistic. Recall the observed t-statistic will be referred to as tref
as it refers to the reference value for the observed data. Next, Yi is regressed
only on xi1. From this model:

Yi = b0 + b1xi1 +Ryi|xi1

the estimates of β0 (b0), β1 (b1), and the residuals (Ryi|xi1
) are generated.

The residuals from this regression (Ryi|xi1
) are permuted to produce R∗yi|xi1

.
The permuted residuals replace the unpermuted residuals in the simple linear
regression equation, creating new response values as they do so:

Y ∗i = b0 + b1xi1 +R∗yi|xi1

where Y ∗i represents the response values corresponding to the fitted values
plus permuted residuals. This process forces the null hypothesis to be true,
since the relationship between Yi and xi2 is broken as the new model omits the
presence of the second variable. The new observations Y ∗i are then regressed
on covariates xi1 and xi2 together, similar to the first step. With the new
regression model:

E(Y ∗i ) = β∗0 + β∗1xi1 + β∗2xi2

estimates of the fitted value β∗2 are obtained from the permuted data (b∗2), as
well as the t-statistic :

t∗ =
b∗2

se(b∗2)

with the consistent n − 3 degrees of freedom. Finally, beginning with the
permutation of the residuals producing R∗yi|xi1

, the procedure is repeated
multiple times for some m < n!, where n! is all possible permutations of
the residuals. Note since m < n!, the permutation test is not an exact
test, but an approximate one. Once a substantial number (m) of t∗ has
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been calculated to create a distribution, tref is compared to these values
[Anderson and Legendre, 1999]. As in general hypothesis testing, if fewer
than 5% of t∗ values are greater than tref , the null hypothesis is rejected and
it’s concluded there is a relationship between Y and xi2 (i.e., β2 = 0 is forced
during permutation under the reduced model and this claim was refuted).

4.1.2 Discussion

It is important to note permutation method 1b, under the reduced model,
preserves the relationships between Yi and xi1, xi1 and xi2, but not Yi and
xi2. The last is not preserved since β2 = 0 was forced when Y ∗i was fitted
to the simple linear regression concerning only xi1. Since xi1 and xi2 were
not permuted, their covariance is preserved [Anderson, 2001]. Though, as
mentioned in the beginning of Chapter 4, both extreme outliers and high
collinearity amongst xi1 and xi2 is problematic. In the preservation of the
relationship between xi1 and xi2, there is caution that a high collinearity
will influence the results of the permutation test. The method of permu-
tation 1b is optimal since errors may be exchangeable within each variable
(Ryi|xi1

and Ryi|xi2
), though not between the two variables (i.e., exchange-

ability is not preserved under permutation of Ryi|xi1xi2
[Kennedy, 1995]. For

exchangeability in this application, it was assumed that the errors, rather
than the response variable as in permutation of the response variable, are
exchangeable under the null hypothesis. Furthermore, possibly the greatest
assumption necessary for permutation of the residuals is that the distribution
of the residuals in the regression model approximate that of the errors in the
true population.

4.2 Under the Full Model

Permutation method 1b also implements permutation of the residuals in
a linear regression model, although this method does not regress under a
reduced model. By permuting the residuals from the full model, method 1b
uses the original estimate of β2, b2, as part of the permutation test. In doing
so, the variance of b2 is reduced as it is repeatedly estimated in the procedure,
increasing the overall power of the test [Anderson and Legendre, 1999].
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4.2.1 Procedure 1b

Following the first steps of permutation method 3 and 1a, method 1b proposes
a regression of Yi on both xi1 and xi2:

Yi = b0 + b1xi1 + b2xi2 +Ryi|xi1xi2

where Ryi|xi1xi2
refers to the residuals from the model on both xi1 and xi2.

From this regression model, the population parameters β0, β1, β2, andεi are es-
timated by b0, b1, b2, andRyi|xi1xi2

. Additionally, a t-statistic for the observed
data is calculated:

tref =
b2

se(b2)

Next, method 1b permutes Ryi|xi1xi2
such that new permuted residuals are

achieved and denoted R∗yi|xi1xi2
. Adding these back to the fitted model with

the population parameter estimates, new response values are achieved:

Y ∗i = b0 + b1xi1 + b2xi2 +R∗yi|xi1xi2

Then, Y ∗i is regressed on both covariates xi1 and xi2 (i.e., the full model).
After this regression, the new multiple linear regression model is:

Y ∗i = b∗0 + b∗1xi1 + b∗2xi2 +R∗yi|xi1xi2

where all coefficients now refer to permuted data. From this, a t-statistic is
calculated such that:

t∗ =
(b∗2 − b2)
se(b∗2)

Notice here that b∗2 is an estimate of β∗2 as b2 is an estimate of β2. Thus,
t∗ inquires about the deviation of a permuted sample estimate (b∗2) from an
unpermuted sample estimate (b2). By quantifying this deviation, insight is
gained about how the sample estimate (b2) deviates from the true population
parameter (β2). The hypothesis is testing whether the parameter significantly
differs from the test statistic, by testing whether the test statistic significantly
differs from the permuted test statistic by comparing the test statistic to a
distribution of the permuted test statistic. In similar terms, the randomiza-
tion of the residuals will be approximately equal to the randomization of the
true errors in the regression model [Manly, 1997]. Given the null hypothesis
is true (β2 = 0), the distribution of errors in the full model will approximate
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the distribution of errors under the null hypothesis [Anderson, 2001]. This
being said, if the null hypothesis is true, the full model:

E(Yi) = β0 + β1xi1 + β2xi2

simplifies to:
E(Yi) = β0 + β1xi1

Following the calculation of t∗, the process is repeated m < n! times,
beginning with the permutation of Ryi|xi1xi2

. Ultimately, the tref is compared
with the distribution of t∗ to obtain a p-value. Whether this p-value less than
the chosen significance value (α) determines whether the null hypothesis is
rejected or not. If it is, the null hypothesis is rejected and consequently, it is
concluded that there is a linear relationship between Yi and xi2.

4.2.2 Discussion

In permuting the residuals under the full model, the covariances among xi1
and xi2 are preserved. Additionally, if there exist a model defined with more
variables which are dependent on xi1 or xi2, these relationships are preserved
as well [Anderson and Legendre, 1999]. Though ter Braak suggested per-
mutation of the residuals under the full model should have greater power
than the same under the reduced model, this was not demonstrated with
any significance in simulations [Anderson and Legendre, 1999]. Yet, simula-
tions show both permutation methods of the residuals have asymptotically
correct significance levels [Anderson and Legendre, 1999]. Of all three per-
mutation methods described thus far, all produced asymptotically equivalent
results and were satisfactory tests for partial regression coefficients. No-
tably, they all returned greater power and type I error rates approximating
α at closer values than the traditional t-test for non-normally distributed
data [Anderson and Legendre, 1999]. Regarding both methods of permut-
ing residuals, the procedure under the full model deviated from the reduced
model in the presence of an extreme xi1 outlier, non-normally distributed er-
rors, and a small sample size. Under these conditions, permutation method
1b provided an inflated type I error rate in simulations. This deviation can
be mitigated with an increase in sample size n, though otherwise, permu-
tation method 1b is preferred in under the three aforementioned conditions
[Anderson and Legendre, 1999].
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An added benefit to method 1b is that the permutation procedure need
not be adapted to test for other partial regression coefficients [Anderson, 2001].
To instead inquire about the relationship between Yi and xi1, the hypothesis
can be altered to reflect:

Ho : β1 = 0

Ha : β1 6= 0

Consequently, the t-statistic must also be changed such that:

tref =
b1

se(b1)

and:

t∗ =
b∗1

se(b∗1)

Aside from these minor adjustments, the computationally intensive permu-
tation procedure does not need to be adapted or re-run. Since regardless
of the hypotheses, method 1b permutes all residuals under the full model,
the only change is the question being asked of the permuted data and the
summary statistics which are calculated.
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Chapter 5

The Näıve Permutation

The “näıve” permutation is described as such because it is focused on our
variable of interest (xi2) rather than the relationships among the variables
within the entire model. This permutation method presented by Oja (1987)
suggests a permutation of the single covariate of interest, xi2. However,
should xi1 and xi2 be correlated, permutation of xi2 removes their correla-
tion structure. Furthermore, inference into the dependency of Yi and xi2 is
complicated by the influence of a possible covariate, xi1.

Definition 5.1. Ancillarity The ancillarity principle requires our statistic be
independent of the parameters in the assumed model [Ghosh et al., 2010].

The ancillarity principle is violated since the collinearity between xi1 and
xi2 is not conserved [Kennedy, 1995]. A pivotal quanitity is not always a
statistic, but when it is, it is called an ancillary statistic. Of the methods
described previously in this work, two permute the residuals in the model.
Permutation of the residuals under the full model preserves the relationship
between Yi and xi1, while breaking the relationships between Yi and xi2, as
well as between xi1 and xi2. The third method shuffled the response variable
in the model. Randomization of Yi preserves the correlation amongst xi1 and
xi2, while breaking the relationship between Yi and xi1, as well as Yi and
xi2. The näıve permutation of this section permutes the variable of interest,
xi2, in the model. This shuffling maintains the relationship between Yi and
xi1, while breaking the correlation between xi1 and xi2, and the relationship
between Yi and xi2.

However, in certain scenarios, permuting one variable is not näıve in the
slightest. In randomized experiments, treatment values (xi2) are assigned
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randomly to subjects [Oja, 1987], while other, for example, demographic
characteristics (xi1), are not randomly assigned. Under this condition, xi1
and xi2 are completely independent. There is no relationship between xi1
and xi2 to break during permutation. Since subjects are randomly assigned
to a treatment level, there is no relationship between the covariates to be
preserved. Because randomization of the explanatory variables is inherent
to the experimental design, it is possible to permute only the variable of in-
terest without violating the exchangeability and ancillarity conditions of the
permutation test [Manly, 1997] during shuffling and calculation of the test
statistic.

5.0.1 Procedure 2

In permutation method 2, and identical to the others, Yi is regressed on xi1
and xi2:

Yi = b0 + b1xi1 + b2xi2

where b0, b1, and b2 are unknown sample estimates of the population, xi2 is a
design variable, and xi1 is a covariate. From this description, b2 is estimating
β2, our parameter of interest, while b0 and b1 are estimates of “nuisance
parameters” β0 and β1 [Oja, 1987].

This paper permutes xi2 and estimates β2 using the familiar aforemen-
tioned test statistic. Unfortunately, Oja is criticized since “the formulas and
calculations are cumbersome” [Collins, 1987]. For the multiple linear regres-
sion model:

Yi = β0 + β1xi1 + β2xi2 + εi

where xi2 is assigned randomly to subjects, the statistic proposed in Oja
(1987) to test Ho : β2 = 0 is:

T (x∗i2) =
∑
i<j<k

4y
ijk4

x∗
i2

ijk

where:

4y
ijk =

∣∣∣∣∣∣
1 1 1
yi yj yk
xi1 xj1 xk1

∣∣∣∣∣∣
and the definition of xi2 follows similarly,
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4x
ijk =

∣∣∣∣∣∣
1 1 1
xi1 xj1 xk1
xi2 xj2 xk2

∣∣∣∣∣∣
with x∗i2 being a random permutation of the variable xi2, though the calcu-
lation is notably “awkward” [Collins, 1987]. The estimator of βijk which will
be permuted, bijk, is defined as:

4b
ijk =

4y
ijk

4x
ijk

Collins (1987) promotes the arguably easier and equivalent test statistic:

∑
i

∑
j

∑
k

4y
ijk 4

x∗
i2

ijk

= 6(
∑

yix
∗
i2)(

2
i1)− (

∑
yixi1)(

∑
xi1x

∗
i2)

∝ y′(I − P1)x
∗
i2

in which P1 = X(X ′X)−1 and X = [1, xi1].Though not equivalent, this paper
will only consider the use of the our test statistic in order to be consistent
with the analysis done with the other randomization schemes. The use of:

t =
b2

se(b2)

allows for equivalent comparisons across all permutation methods described,
as the p-value is calculated in relation to this test statistic and the observed
t-statistic prior to shuffling, just as with all other randomization methods
considered in this research.
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Chapter 6

Simulation Study

The purpose of the simulation study is to provide omniscient evidence. To
determine whether conclusions drawn from a permutation test performed on
a sample are representative of the population, it’s necessary to simulate from
a known population. By drawing a sample from a known population, it’s
possible to observe the results of the permutation test on the sample data
set and verify whether it accurately describes the behavior of the population.
Plainly, if a permutation test is performed on a multiple linear regression
model of the observations and deduces there exist a relationship between Yi
and xi2, this can be confirmed or denied by the specifications of the known
population (from which the data were sampled).

6.1 Mis-Specification

Often times there exist multiple explanatory variables in a population, though
information is colleted on only one or a few of the variables. Mis-specification
implies fitting a model to the observed data incorrectly. In practice, mis-
specification is difficult to recognize. However, the simulated data can be
drawn from a population with k explanatory variables and modeled using
only j < k explanatory variables, where j, k,∈ N+. For example, one may
have a population model from which a relationship is generated as:

Yi = β0 + β1xi1 + β2xi2 + ...+ βjxij + ...+ βkxik + εi
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though in collecting data and thereby mis-specifying the model, a simpler
multiple regression model is instead fit to the sample:

Yi = β0 + β1xi1 + β2xi2 + ...+ +βjxij

The purpose of simulating a mis-specification is to observe how well a permu-
tation test performs when there exists influence of additional variables which
are not present in the OLS regression. Since the model is knowingly incor-
rect, results report how insightful permutation tests are to the true behavior
of the population despite this mis-specification.

6.2 Variants

This simulation study introduces a multitude of variations, as it attempts to
be as comprehensive as possible. Four populations were created and sampled
from. All variables were generated from a normal distribution with µ = 0
and σ2 = 1, though an approachable expansion of this study would include
non-normal distributions and errors. An assessment of non-normality would
contextualize the simulations done in Anderson and Legendre (1999).

Data
Type:

Control 1 2 3

xi1 ∼ N(µ, σ2) ∼ N(µ, σ2) ∼ N(µ, σ2) ∼ N(µ, σ2)

xi2 ∼ N(µ, σ2)
∼
N(µ, σ2) +
x1

∼ N(µ, σ2) ∼ N(µ, σ2)

xi3 N/A N/A N/A ∼ N(µ, σ2)
xi4 N/A N/A N/A ∼ N(µ, σ2)

Population
Yi =
β0+β1xi1+
β2xi2 + εi

Yi =
β0+β1xi1+
β2xi2 + εi

Yi =
β0+β1xi1+
β2xi2 +
β3xi1xi2 +
εi

Yi =
β0+β1xi1+
β2xi2 +
β3xi3 +
β4xi4 + εi

Linear
Model Fit

y ∼ xi1 +
xi2

y ∼ xi1 +
xi2

y ∼ xi1 +
xi2

y ∼ xi1 +
xi2

Summary
xi1 and xi2
are inde-
pendent

xi1 and xi2
are corre-
lated

xi1 and
xi2 are
interacting

xi3 and xi4
are impor-
tant, but
missing
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To each of the datasets simulated from the four populations, the same
linear model is applied:

ŷi = b0 + b1xi1 + b2xi2.

Note that the “Control” population specifies that the response variable is a
function only of xi1 and xi2, which are independent. The “Data Type 1”
population specifies y as a function of only xi1 and xi2, which are correlated.
Specifically, xi2 is generated from xi1, with some additional, normally dis-
tributed noise. The “Data Type 2” population specifies y as a function of
xi1 and xi2 where the covariates interact. The interaction is not specified in
the model. Finally, the “Data Type 3” population specifies y as a function
of xi1 and xi2, as well as xi3 and xi4. Note once again, the model is mis-
specified since the additional variables xi3 and xi4 are not considered in the
linear regression. The purpose of the different data structures is to vary the
population from which we sample, and observe how unknown specificity (co-
variate correlation, interaction, or additional hidden explanatory variables)
influences the performance of the permutation test as compared to OLS in
multiple linear regression. The number of observations is given by the vari-
able “nobs.”

All discussed permutation methods (permutation of the residuals, per-
mutation of the response variable, and näıve permutation) were created as
functions, with the data type (population) being their input. The permuta-
tion functions run their respective methods on each data type, and summarize
the observed value of b2 in the sample, the observed value of the t-statistic in
the sample (“tref”), the p-value as calculated by OLS (“OLSpval”), and the
p-value as calculated by the permutation method (“permpval”). Since the
sample is permuted multiple times (“nshuffle”) to generate a distribution of
permuted t-statistics against which to compare tref ,

permpval =

∑
[|t∗| > |tref |]
nshuffle

where “t∗” represents the calculated t-statistic after each permutation, and of
which the distribution of permuted t-statistics is comprised. Simply put, the
p-value of the permutation test answers the question: How often was a larger
t-statistic seen than the originally observed value after nshuffle permutations
of the sample?

For additional variation, population statistics β1, β2, β3, β4 and nobs were
sequenced to provide multiple combinations of coefficient values and sample
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sizes. β0 was not sequenced because variation of the intercept value failed
to influence permutation results across populations and would have substan-
tially increased computation time had it been included.

Sample Values Iterations
β1 0.0, 0.2, 0.4, 0.6, 0.8, 1.0
β2 0.0, 0.2, 0.4, 0.6, 0.8, 1.0
β3 0.0, 0.2, 0.4, 0.6, 0.8, 1.0
β4 0.0, 0.2, 0.4, 0.6, 0.8, 1.0
nobs 15, 30, 45, 60

Table 6.1: The values which set our population are listed above. Every
possible combination of these coefficient iterations are used to create many
populations, from which samples were taken and permutation tests were
performed.

The number of permutations for each sample was fixed at nshuffle = 100.
For each possible combination of sample values, the data set was permuted
100 times. From this, the summary statistics are compared: OLS versus
permutation. Each permutation method is performed on every combination
of sample values, for every population generated. For example, Data Type 1
will undergo all four permutation methods separately. During each of these
four individual simulations, the permutation functions will iterate through all
combinations of sample values, to produce a comprehensive list of summary
statistics. This process is repeated for all four data types (populations). In
total, sixteen simulations are completed for each combination of parameters
in 6.1, with each providing a robust comparison of the permutation method
and OLS’s performance under different structures of data. The output is
how often the null hypothesis is rejected, which will either be a type I error
rate or power, depending on the how Ho is specified: whether or not β2 = 0

6.3 Results

There are 16 different combinations of “Data Type” and “Permutation Method,”
all of which will be summarized. However, for each table of graphs which
presents these comprehensive results between data and method, the coeffi-
cients of the population from which data was generated must also be spec-
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ified. This paper has opted to display the incrementally increasing values
of β2 along the x-axis of each individual graph, since inquiry focuses on the
relationship between xi2 and yi. Thus, it is left to specify β1, β3, and β4 as
variable or constant at zero. These remaining coefficients are either speci-
fied as non-zero (i.e., β1 6= 0= “β1! = 0” in graph table titles), specified as
zero (i.e., “β1 = 0”), or displayed incrementally by color-coding. When the
coefficients are given by color, a line is displayed for each increment of the
variable (i.e., pink is β1 = 0.2, blue is β1 = 0.4), while the line-type (solid
or dashed) refers to whether the line is describing the OLS rejection rate or
the permutation method rejection rate. In total for these tables of graphs,
(see Figures 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11, 6.12), each
individual graph holds twelve lines describing the behavior of the data type
and permutation method combination as the coefficients of the population
vary. There are twelve lines total to account for the variations of one param-
eter via six different colored lines, which are color-coded for both the OLS
and Permutation Rejection Rates (i.e., there are six solid colored lines and
six dashed colored lines to describe how the rejection rates change across
different coefficient values). The exception of these twelve lines are Figures
6.1, 6.2, 6.3, and 6.4. For Figures 6.1, 6.2, 6.3, and 6.4, permutation meth-
ods and data structures are combined with parameters β1 = 0, β3 = 0, and
β4 = 0 for 6.1 and 6.2, and β1 6= 0, β3 = 0, and β4 = 0 for 6.3, and 6.4.
Therefore, the only specified and incremental variable parameter is β2, which
is specified along the x-axis. Without variance in the other parameters, or
specified variance in the case of β1 6= 0 for 6.3, and 6.4, color-coding is not
necessary to distinguish between different values. Thus, there are only two
lines necessary in these graphs. Along the y-axis, in all of the figures in
the rest of this chapter, the rejection rate is plotted, so the line-type simply
differentiates between the two comparisons of OLS and permutation p-value
calculations. For simplicity, only sample sizes of n = 15 and n = 60 will be
displayed, though simulations were run for all sample size increments listed
in the previous section.

6.4 Zero Constant b1, b3 and b4

Below Figures 6.1 and 6.2 display permutation methods across the top, and
data types along the side. The rejection rate for each graph is plotted on the
y-axis, while the increments of β2 are plotted along the x-axis. The two line-
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types in each individual graph refer to whether the line is a representation of
the OLS p-value or the permutation p-value. While Figure 6.1 depicts results
for a sample size of n = 15 from the population, Figure 6.2 depicts results
for a sample size of n = 60. A horizontal line has been added for y = 0.05
to differentiate between size and power of the two approaches. Recall under
the null hypothesis (when β2 = 0), the best performing test will return a
level of significance of 0.05. This describes the ability of the approach to
provide an exact test with a fixed size of 0.05, given the null hypothesis is
accepted. When the contrary is true and β2 6= 0, it becomes a question of
which approach is rejecting the null hypothesis at a higher power (i.e., more
often). It is possible to not only visualize how permutation tests compare to
OLS via size and power, but additionally how various permutation methods
compare to OLS via size and power under different populations of data.
Furthermore, one can ask: If given a larger sample size from the data (i.e.,
n = 60 rather than n = 15), do these observations comparing OLS and
permutation tests change?
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Figure 6.1: For sample size n = 15.
Power: With β2 as the only non-zero variable, both approaches are quite
variable across methods of permutation and data structures. However, both
typically deviate the same, which insinuates this variation in rejection rate
is a consequence of small sample size and zero coefficients for β1, which
describes a variable in the fitted model (xi1).
Size: Both approaches appear to be underestimating and overestimating
the size for β2 = 0, though OLS appears to make an overestimation in error
more frequently than any permutation test. Their variability again, points
to a necessity for a larger sample size.
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b2 method ols rej 1 perm rej 1 ols rej 2 perm rej 2 ols rej 3 perm rej 3 ols rej C perm rej C
0 1a 0 0 0.2 0.2 0 0 0 0
0 1b 0 0 0 0 0 0 0.2 0
0 2 0 0 0 0 0.2 0 0 0
0 3 0.2 0 0 0 0 0 0 0
0.2 1a 0 0 0 0 0 0 0 0
0.2 1b 0 0 0 0 0.2 0.2 0.2 0.2
0.2 2 0 0 0.2 0.2 0.2 0 0 0
0.2 3 0.2 0.2 0 0 0 0 0.2 0.2
0.4 1a 0.4 0.4 0 0 0.4 0.6 0.2 0.2
0.4 1b 0.2 0.2 0.2 0.2 0.4 0.6 0.4 0.4
0.4 2 0 0 0.2 0 0.6 0.6 0.2 0.2
0.4 3 0.4 0.2 0.4 0.4 0.6 0.6 0.2 0
0.6 1a 0.8 0.8 0.8 0.8 1 1 0.4 0.2
0.6 1b 0.6 0.4 0.6 0.8 0.4 0.4 1 0.8
0.6 2 0.6 0.6 1 0.8 0.6 0.6 0.8 0.8
0.6 3 0.4 0.4 0.6 0.6 0.8 0.8 0.4 0.4
0.8 1a 0.6 0.8 0.4 0.4 0.8 0.8 0.4 0.4
0.8 1b 0.6 0.4 0.6 0.6 0.8 0.8 0.6 0.6
0.8 2 0.8 0.8 0.6 0.6 1 0.8 0.6 0.8
0.8 3 0.6 0.8 1 1 0.6 0.6 0.8 0.8
1 1a 0.8 0.8 1 1 0.8 0.8 0.8 1
1 1b 1 1 0.4 0.4 0.8 0.8 0.8 0.8
1 2 1 1 0.6 0.4 0.8 0.8 1 1
1 3 0.8 0.8 0.6 0.6 1 1 1 1

Table 6.2: Here, the rejection rates for OLS and permutation methods are
compared side-by-side via data type, with the coefficents of β2 and the
method of permutation listed in the first two columns. These are the values
plotted in Figure 6.1. Here, the caption of Figure 6.1 is observed with exact
rejection rate values.

32



Figure 6.2: For sample size n = 60.
Power: There is significantly less variation observed in both OLS and per-
mutation rejection rates than in Figure 6.1. Also, with many data types and
permutation methods achieving 100% power at β2 = 0.6, whereas few did, if
at all, in Figure 6.1, an increase in power is present much more rapidly than
with n = 15.
Size: The majority of graphs appear to have a level of significance greater
than 0.05, suggested an inflated type I error rate There are considerably
more errors in controlling size when n = 60. Mainly, overestimation errors
occur in both approaches. Other research saw variation in type I error rates
decrease as sample size increased across permutation methods with non-zero
β2 and correlation between xi1 and xi2 at zero, as is the case in this partic-
ular simulation [Anderson and Legendre, 1999]. While permutation method
2, the näıve permutation, does not display an inflated type I error rate and
this is notable, the concern is primarily the lack of consensus among OLS
rejection rates across permutation methods. OLS is performed on each data
type across permutation methods, so the variation seen in the solid line of
rejection rates horizontally is chance, rather than an indicator of notable
variation. Still, the variation of the OLS rejection rate gives valuable insight
into the consistency of this method and its performance. With a sample
size n = 60 and no collinearity among variables, the OLS rejection rate ap-
pears to perform on par or worse than the rejection rate of any of the four
permutation methods.
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b2 method ols rej 1 perm rej 1 ols rej 2 perm rej 2 ols rej 3 perm rej 3 ols rej C perm rej C
0 1a 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.2
0 1b 0.4 0.4 0.4 0.2 0.2 0.2 0 0
0 2 0 0 0 0 0 0 0 0
0 3 0.4 0.2 0.2 0.2 0 0 0.2 0.2
0.2 1a 0.2 0.2 0.4 0.4 0.2 0.2 0.2 0.2
0.2 1b 0.2 0.2 0.2 0.2 0.4 0.4 0 0
0.2 2 0.6 0.6 0.6 0.4 0.6 0.4 0.2 0.2
0.2 3 0.2 0.2 0.2 0.2 0 0 0.2 0.2
0.4 1a 1 1 1 1 1 1 0.8 0.8
0.4 1b 1 1 0.8 0.8 0.6 0.6 1 1
0.4 2 0.6 0.6 0.8 0.8 0.8 0.8 0.6 0.4
0.4 3 1 1 0.8 0.8 0.8 0.8 0.8 0.8
0.6 1a 1 1 1 1 1 1 0.8 0.8
0.6 1b 1 1 1 1 1 1 1 1
0.6 2 1 1 1 0.8 1 1 1 1
0.6 3 1 1 1 1 1 1 1 1
0.8 1a 1 1 1 1 1 1 1 1
0.8 1b 1 1 1 1 1 1 1 1
0.8 2 1 1 1 1 1 1 1 1
0.8 3 1 1 1 1 1 1 1 1
1 1a 1 1 1 1 1 1 1 1
1 1b 1 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1 1 1
1 3 1 1 1 1 1 1 1 1

Table 6.3: As mentioned previously in Figure 6.2, there is a large increase
in power across permutation methods, as evidenced by the “1’s” displayed
in Table 6.3, which refer to a 100% rejection rate. While this was hardly
achieved for sample size n = 15, as seen in Table 6.2, here both the OLS and
permutation methods are rejecting the null hypothesis with 100% confidence
for a range of intercepts, beginning with β2 = 0.4 and continuing until β2 = 1.
However, permutation and OLS still fail to minimize the type I error rate, as
evidenced by the values in the first four rows of the table (where β2 = 0, thus
the null hypothesis is true), of which none are the intended α = 0.05. Instead,
most of these values are inflated at values of 0.2 and 0.4, and consequently
say both methods are incorrectly rejecting the null hypothesis at high rates
(20-40% of the time).

6.5 Variable β1, Zero Constant β3 and β4

In the previous subsection, 6.4, while β2 was varied (i.e., β2 = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
β1, β3, and β4 were held constant at zero. Here, both β2 and β1 are varied,
while β3 and β4 still remain held constant at zero as before. Then, the re-
sults were observed across permutation methods and data types as done in
subsection 6.4. The values of β1 are not displayed in the plot as β2 is along
the x-axis. Instead, β1 simply does not equal zero, though the exact value of
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β1 (either 0.0, 0.2, 0.4, 0.6, 0.8 or 1.0) is unknown.

Figure 6.3: For sample size n = 15.
Power: it appears most methods of permutation tests slightly under-perform
in comparison to OLS, across different data structures. However, permuta-
tion method 1a (that promoted by Freedman and Lane) seems to barely
outperform OLS for data types 1, 2, and 3, until β2 has a larger coefficient
(i.e., when β2 = 1). Both approaches (OLS and permutation method 1a, 1b,
2, and 3) correctly fail to to reject the null hypothesis when b2 = 0 for all
data types.
Size: all tests appear to report very similar results, though Table 6.4 shows
the slight differences.
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b2 method ols rej 1 perm rej 1 ols rej 2 perm rej 2 ols rej 3 perm rej 3 ols rej C perm rej C
0 1a 0.08 0.08 0.04 0.04 0.04 0.04 0.04 0.04
0 1b 0.08 0.04 0 0 0.08 0.04 0.12 0.08
0 2 0 0 0 0 0 0 0.04 0
0 3 0.12 0.12 0.16 0.12 0.08 0.08 0.04 0.08
0.2 1a 0.08 0.04 0.2 0.2 0.28 0.32 0.08 0.08
0.2 1b 0.04 0.04 0.16 0.12 0.12 0.08 0.12 0.12
0.2 2 0.2 0.16 0.04 0.04 0.12 0.08 0 0.04
0.2 3 0.16 0.16 0.08 0.08 0.04 0.04 0.16 0.2
0.4 1a 0.2 0.2 0.24 0.28 0.44 0.44 0.32 0.28
0.4 1b 0.2 0.16 0.16 0.16 0.2 0.2 0.32 0.28
0.4 2 0.28 0.24 0.28 0.28 0.36 0.32 0.16 0.12
0.4 3 0.28 0.28 0.24 0.2 0.44 0.4 0.2 0.12
0.6 1a 0.4 0.44 0.56 0.6 0.52 0.56 0.52 0.52
0.6 1b 0.52 0.48 0.52 0.48 0.52 0.56 0.6 0.56
0.6 2 0.52 0.4 0.48 0.48 0.28 0.36 0.56 0.52
0.6 3 0.48 0.44 0.44 0.48 0.52 0.44 0.4 0.4
0.8 1a 0.76 0.76 0.8 0.76 0.72 0.68 0.88 0.76
0.8 1b 0.88 0.88 0.84 0.76 0.72 0.72 0.72 0.68
0.8 2 0.72 0.76 0.72 0.72 0.72 0.72 0.8 0.72
0.8 3 0.84 0.72 0.72 0.68 0.68 0.64 0.76 0.76
1 1a 0.92 0.8 0.8 0.72 0.76 0.64 0.92 0.88
1 1b 0.88 0.76 0.92 0.96 0.8 0.84 0.84 0.72
1 2 0.96 0.96 0.72 0.76 0.88 0.76 0.92 0.92
1 3 0.88 0.88 0.92 0.92 0.76 0.76 0.92 0.88

Table 6.4: Based on the graphs in Figure 6.3, it appeared permutation
method 1a was the only method to correctly fail to reject the null hypothe-
sis with more confidence than OLS (i.e., have a higher power/rejection rate
for β2 6= 0). However, a closer examination of Table 6.4 shows permuta-
tion method 1a only has a consistently equal or higher rejection rate than
OLS when β2 = 0.6 for all data types. As the analysis of simulation results
continues, it will become more obvious that β2 = 0.6 appears to be a thresh-
old to confidently reject the null hypothesis for both OLS and permutation
methods.
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Figure 6.4: For sample size n = 60.
Power: Much of the same trends are seen as in Figure 6.3 for sample size
n = 15, though both approaches reach a higher power more quickly (i.e., for
lower coefficients of β2) than previously. Comparison of the two approaches
are much closer in this subsection 6.5 than in subsection 6.4 regardless of β2.
Size: Again, all tests appear to report very similar results, though numerical
values of the size given in Table 6.5 later will showcase the slight differences.
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b2 method ols rej 1 perm rej 1 ols rej 2 perm rej 2 ols rej 3 perm rej 3 ols rej C perm rej C
0 1a 0.08 0.08 0.04 0.04 0.04 0.04 0 0
0 1b 0.08 0.04 0 0 0.08 0.04 0.04 0.04
0 2 0 0 0 0 0 0 0.08 0.12
0 3 0.12 0.12 0.16 0.12 0.08 0.08 0.08 0.04
0.2 1a 0.08 0.04 0.2 0.2 0.28 0.32 0.36 0.28
0.2 1b 0.04 0.04 0.16 0.12 0.12 0.08 0.36 0.4
0.2 2 0.2 0.16 0.04 0.04 0.12 0.08 0.36 0.28
0.2 3 0.16 0.16 0.08 0.08 0.04 0.04 0.28 0.28
0.4 1a 0.2 0.2 0.24 0.28 0.44 0.44 0.68 0.72
0.4 1b 0.2 0.16 0.16 0.16 0.2 0.2 0.8 0.84
0.4 2 0.28 0.24 0.28 0.28 0.36 0.32 0.72 0.76
0.4 3 0.28 0.28 0.24 0.2 0.44 0.4 0.88 0.84
0.6 1a 0.4 0.44 0.56 0.6 0.52 0.56 1 1
0.6 1b 0.52 0.48 0.52 0.48 0.52 0.56 1 1
0.6 2 0.52 0.4 0.48 0.48 0.28 0.36 1 0.96
0.6 3 0.48 0.44 0.44 0.48 0.52 0.44 1 1
0.8 1a 0.76 0.76 0.8 0.76 0.72 0.68 1 1
0.8 1b 0.88 0.88 0.84 0.76 0.72 0.72 1 1
0.8 2 0.72 0.76 0.72 0.72 0.72 0.72 1 1
0.8 3 0.84 0.72 0.72 0.68 0.68 0.64 1 1
1 1a 0.92 0.8 0.8 0.72 0.76 0.64 1 1
1 1b 0.88 0.76 0.92 0.96 0.8 0.84 1 1
1 2 0.96 0.96 0.72 0.76 0.88 0.76 1 1
1 3 0.88 0.88 0.92 0.92 0.76 0.76 1 1

Table 6.5: With the increase in sample size to n = 60, many of the type
1 error rates displayed in the first four rows of the table for β2 = 0 are
expected to oscillate around α = 0.05. Furthermore, the OLS rejection
rates for different permutation methods are expected to be the same in their
data types, since OLS is the same method used across different permutation
methods 1a, 1b, 2, and 3. However, there is variation ranging from 0.04 to
0.16 in type 1 error rates for OLS in each respective data type when β2 = 0.
Similarly, the power of OLS should be relatively close as we proceed down
the table to non-zero values of β2. This occurrence alludes to substantial
variation in our simulation results, and calls for more extensive simulations
to reach consensus among these values for OLS.

6.6 Incremental β1, Zero Constant β3 and β4

To further investigate the influence of β1, the increments of the coefficient
have been color-coded for each graph in the table. Now, rather than just
assessing the influence of a variable β1 as in subsection 6.5, this paper will look
at the effect when β1 = 0.2, 0.4, 0.6, 0.8 and 1.0 individually. By separating
rejection rates via the β1 coefficient, one can analyze the performance of both
inference approaches under extremely specific conditions and interactions of
β2 and β1, while β3 and β4 remain constant at zero.
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Figure 6.5: For sample size n = 15.
Power: It’s interesting to still see a lot of the same general trends of the
rejection rates as in Figure 6.3. This suggests sample size is a stronger indi-
cator of rejection rate trends than β1, though variability amongst β1 amidst
a changing β2 is still very evident. In particular for permutation method 1a
and OLS, β1 = 0.4 appears to achieve the highest power the quickest (for
the lowest values of β2) for data types 1, 3, and C. Still, it is difficult to
draw conclusions given the variability of the results for different values of β1.
However, higher coefficients of β1 and β2 in combination generally lead to
higher rejection rates for OLS and across permutation methods. Meaning,
no combination of coefficients for β1 and β2, permutation methods, or data
types, seems to be consistently underperforming.
Size: Both OLS and permutation appear to either return type 1 errors of 0
for smaller values of β1 or overestimate size at α = 0.05 for larger values of
β1. The latter is typically seen for values where β1 = 0.8 or β1 = 1.0.
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Figure 6.6: For sample size n = 60.
Power: Once again, there are obvious similarities between this table of
graphs, Figure 6.3, and Figure 6.4. Power grows fastest across permutation
methods for data type 3 when β1 = 1, which is significant given the data
structure of 3 involves important but missing variables xi3 and xi4 in the
fitted model. Data structure 2 was created with a xi2 which was dependent
on xi1, and it is evident permutation method 2 (the näıve permutation)
quickly grows in power for both approaches.
Size: There don’t appear to be certain values of β1 that contribute to an
under or overestimation of size across permutation methods and data types,
both approaches are noticeably weak at controlling size for all data types.
The discrepancy in type 1 error rates was likely present in Figure 6.5 but
less noticeable with the overall increased variability. It’s interesting there
was a decrease in the variation of rejection rates when β2 6= 0 but not type 1
error rates (when β2 = 0), leading one to ponder how to specifically decrease
variability in type 1 error rates if not with an increase in sample size.
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6.7 Incremental β3, Zero Constant β1 and β4

Rather than continue with β1 as a variable coefficient, it will now be held
constant at zero with β4, while instead β3 6= 0. While β3 is included in data
structures 2 and 3, β4 is only included in the generation of x values for data
type 3, though it remains in the structure of the y values for both data type
2 and 3. The coefficient β4 has the same affect as b3 in data type 3: both
are important since variables xi3 and xi4 are present in the data structure,
though they’re missing from the fitted model y ∼ xi1 + xi2. However, β3 is
present in data type 2 as well, as it concerns the interactive term xi1 ∗ xi2 in
the population. For this reason, this section has elected to look at variable
version of β3 closely, rather than β4.
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Figure 6.7: For sample size n = 15.
Power: Across permutation methods for data structure 3 and C, the rejec-
tion rates of both approaches look extremely similar to that seen in Figure
6.5. Across all graphs, red rejection rates (β3 = 0) for both approaches seem
nearly identical to Figure 6.5. In data structure 2 particularly, the rejec-
tion rates of OLS and permutation appear highly dependent on the value
of β3 across permutation methods (i.e., appear extremely variable). Power
descreases for β2 = 1.0, as evidenced by a decrease in power for many of
the graphs, suggesting difficulty correctly rejecting the null hypothesis un-
der these circumstances for both OLS and permutation methods after the
β2 = 0.6 threshold is reached as mentioned in Table 6.4.
Size: There is clear inconsistency in the ability of both approaches to control
size as β3 varies, pointing to a necessity for a larger sample size.
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b2 method ols rej 1 perm rej 1 ols rej 2 perm rej 2 ols rej 3 perm rej 3 ols rej C perm rej C
0 1a 0.04 0.04 0.08 0.12 0.08 0.12 0.04 0
0 1b 0.04 0.04 0.12 0.12 0.04 0.08 0.08 0.04
0 2 0.08 0.08 0.08 0.08 0.04 0.04 0.04 0
0 3 0.08 0.08 0.08 0.08 0 0 0.08 0
0.2 1a 0.16 0.16 0.12 0.12 0.04 0.04 0.12 0.12
0.2 1b 0.04 0.08 0.24 0.2 0.12 0.08 0.16 0.12
0.2 2 0.16 0.12 0.04 0.08 0.16 0.12 0.08 0
0.2 3 0.12 0.12 0.16 0.24 0.08 0 0.08 0.08
0.4 1a 0.28 0.28 0.36 0.36 0.24 0.24 0.28 0.32
0.4 1b 0.44 0.4 0.28 0.32 0.16 0.12 0.24 0.2
0.4 2 0.2 0.2 0.24 0.24 0.2 0.2 0.24 0.28
0.4 3 0.32 0.32 0.28 0.28 0.2 0.28 0.16 0.16
0.6 1a 0.36 0.28 0.52 0.52 0.28 0.28 0.44 0.44
0.6 1b 0.6 0.56 0.44 0.4 0.4 0.32 0.44 0.44
0.6 2 0.64 0.64 0.44 0.44 0.28 0.28 0.36 0.36
0.6 3 0.56 0.52 0.32 0.32 0.4 0.36 0.56 0.52
0.8 1a 0.68 0.64 0.84 0.8 0.6 0.64 0.72 0.72
0.8 1b 0.76 0.64 0.72 0.64 0.6 0.6 0.6 0.68
0.8 2 0.76 0.6 0.84 0.76 0.48 0.48 0.64 0.64
0.8 3 0.76 0.64 0.56 0.6 0.76 0.72 0.76 0.76
1 1a 0.84 0.84 0.76 0.68 0.92 0.92 0.88 0.84
1 1b 0.88 0.88 0.72 0.72 0.8 0.8 0.88 0.88
1 2 0.8 0.8 0.84 0.88 0.84 0.84 0.84 0.84
1 3 0.84 0.72 0.8 0.76 0.88 0.76 0.72 0.64

Table 6.6: There is a clear display of low rejection rates when β2 6= 0 across
data types and permutation methods. Notably, power never surpasses 0.88
for any scenario, and permutation methods appear to significantly underper-
form OLS for data type 3 when β2 = 1.0. Additionally, inflated type 1 error
rates are present for permutation methods 1a and 1b for data structures 2
and 3.
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Figure 6.8: For sample size n = 60.
Power: Many of the graphs look quite similar to Figure 6.6, aside from data
structures 2 and 3, which coincidentally are the two which contain β3 in their
structures. For these two structures, the data requires a higher β2 coefficient
to achieve the same power as the other structures across values of β3.
Size: Once again, there is a lot of variety displayed across all graphs sur-
rounding size. Type 1 error rates are particularly inflated for data structures
1, 2, and 3, though variability is displayed for all combinations of data types
and permutation methods.

44



b2 method ols rej 1 perm rej 1 ols rej 2 perm rej 2 ols rej 3 perm rej 3 ols rej C perm rej C
0 1a 0.08 0 0.16 0.12 0 0 0.04 0.04
0 1b 0 0.08 0.04 0.16 0.08 0.04 0.08 0.08
0 2 0.12 0.12 0.16 0.16 0.04 0.04 0 0
0 3 0 0.04 0.04 0.12 0.08 0.12 0.04 0.08
0.2 1a 0.12 0.16 0.32 0.36 0.32 0.28 0.28 0.28
0.2 1b 0.28 0.24 0.32 0.24 0.2 0.2 0.44 0.44
0.2 2 0.32 0.32 0.32 0.36 0.24 0.2 0.28 0.28
0.2 3 0.28 0.32 0.28 0.24 0.28 0.32 0.44 0.44
0.4 1a 0.96 0.96 0.72 0.68 0.84 0.88 0.84 0.8
0.4 1b 0.96 0.88 0.68 0.68 0.68 0.72 0.84 0.84
0.4 2 0.88 0.88 0.6 0.6 0.64 0.64 0.88 0.88
0.4 3 0.88 0.84 0.64 0.64 0.64 0.6 0.84 0.84
0.6 1a 0.96 0.96 0.88 0.8 0.96 0.96 1 1
0.6 1b 1 1 0.88 0.88 0.92 0.88 0.96 0.96
0.6 2 1 1 0.88 0.84 0.92 0.92 1 1
0.6 3 1 1 0.88 0.84 1 0.92 1 1
0.8 1a 1 1 0.96 0.96 1 1 1 1
0.8 1b 1 1 1 1 1 1 1 1
0.8 2 1 1 1 0.96 1 1 1 1
0.8 3 1 1 1 1 1 1 1 1
1 1a 1 1 1 1 1 1 1 1
1 1b 1 1 1 1 1 1 1 1
1 2 1 1 0.96 0.96 1 1 1 1
1 3 1 1 1 1 1 1 1 1

Table 6.7: The higher powers from the increase in sample size are seen con-
cretely in the lower half of Table 6.7 for both OLS and permutation methods,
though data type 2 does not reach 100% power as the other structures do
until β2 > 0.6. This being said, higher power is still achieved for lower
coefficients of β2 than previously seen, such as for values of β2 = 0.4.

6.8 Variable β1, Incremental β3, and Zero Con-

stant β4

This next section will continue to look at incremental influences of β3 across
data structures and permutation methods. Additionally, β1 will now be
included as a variable such that b1 6= 0, although β4 will continue to be held
constant at zero.
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Figure 6.9: For sample size n = 15.
Power: Finally, but not conducive to our narrative, there is clear agreement
across permutation methods and data structures. All appear to struggle
with confidently rejecting the null hypothesis, though it becomes easier as β2
increases, regardless of b3 values. However, in data structure 2, this rejection
becomes particularly hard for both approaches as β3 increases in size, likely
because it represents an interaction term which concerns both xi1 and xi2,
both of which now have variable coefficients in this display. The same is
witnessed for data structure 3 across permutation methods, which has the
same considerably difficulty as data structure 2 for larger coefficients of β3.
Size: There appears to be increased agreement on controlling size across
all graphs. However, data structures 2 and 3 appear to have less consensus
around the y-intercept of 0.05 at β2 = 0, though still notably stronger than
previous tables of graphs.
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b2 method ols rej 1 perm rej 1 ols rej 2 perm rej 2 ols rej 3 perm rej 3 ols rej C perm rej C
0 1a 0.056 0.048 0.088 0.064 0.056 0.048 0.056 0.04
0 1b 0.04 0.04 0.128 0.112 0.088 0.104 0.024 0.024
0 2 0.064 0.064 0.088 0.064 0.096 0.088 0.064 0.08
0 3 0.048 0.048 0.096 0.088 0.056 0.048 0.024 0.024
0.2 1a 0.128 0.12 0.168 0.168 0.104 0.088 0.088 0.088
0.2 1b 0.128 0.104 0.112 0.12 0.112 0.104 0.096 0.088
0.2 2 0.144 0.144 0.088 0.08 0.12 0.104 0.136 0.128
0.2 3 0.048 0.048 0.064 0.072 0.072 0.08 0.128 0.096
0.4 1a 0.24 0.224 0.24 0.248 0.224 0.224 0.224 0.232
0.4 1b 0.216 0.216 0.272 0.264 0.168 0.176 0.264 0.256
0.4 2 0.232 0.2 0.224 0.24 0.176 0.184 0.232 0.224
0.4 3 0.256 0.24 0.256 0.208 0.144 0.144 0.256 0.2
0.6 1a 0.504 0.464 0.432 0.424 0.456 0.432 0.52 0.528
0.6 1b 0.48 0.464 0.36 0.344 0.376 0.336 0.552 0.544
0.6 2 0.512 0.48 0.424 0.392 0.408 0.392 0.44 0.464
0.6 3 0.552 0.544 0.488 0.448 0.384 0.336 0.48 0.456
0.8 1a 0.688 0.656 0.608 0.6 0.592 0.576 0.632 0.656
0.8 1b 0.728 0.712 0.624 0.592 0.52 0.488 0.616 0.584
0.8 2 0.704 0.672 0.592 0.608 0.616 0.568 0.736 0.728
0.8 3 0.744 0.76 0.544 0.552 0.624 0.592 0.72 0.712
1 1a 0.864 0.864 0.728 0.688 0.784 0.76 0.816 0.8
1 1b 0.8 0.776 0.728 0.744 0.76 0.76 0.856 0.864
1 2 0.824 0.832 0.728 0.712 0.792 0.76 0.888 0.872
1 3 0.872 0.88 0.752 0.752 0.696 0.688 0.848 0.84

Table 6.8: With this table, it becomes obvious that though type 1 error rates
are finally approaching α = 0.05, they remain multiples of 0.004, which is
an odd cause for concern and suggests the simulations may not be averaging
correctly to return the rejection rate. Additionally, there is more agreement
across data types between OLS and permutation methods than among OLS,
which is a greater cause for concern since OLS is not being manipulation
with data structures as the permutation methods varies among 1a, 1b, 2 or
3. As in Table 6.6 none of the rejection rates surpass 0.89 when β2 = 1.0.
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Figure 6.10: For sample size n = 60.
Power: All methods achieve a higher power for lower coefficients of β2 than
previously in Figure 6.9 for sample size n = 15. The most variability is seen
in data structures 2 and 3 across permutation methods.
Size: There is noticeably more consensus of size at 0.05 for data structure
3 and C, with the same variability seeming to be present for all other data
structures.
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b2 method ols rej 1 perm rej 1 ols rej 2 perm rej 2 ols rej 3 perm rej 3 ols rej C perm rej C
0 1a 0.072 0.04 0.088 0.088 0.008 0.008 0.016 0.016
0 1b 0.032 0.032 0.112 0.136 0.032 0.056 0.056 0.048
0 2 0.032 0.032 0.12 0.112 0.056 0.048 0.024 0.048
0 3 0.048 0.072 0.112 0.112 0.056 0.048 0.056 0.056
0.2 1a 0.312 0.296 0.288 0.272 0.24 0.208 0.288 0.28
0.2 1b 0.288 0.264 0.368 0.336 0.296 0.28 0.24 0.256
0.2 2 0.384 0.368 0.264 0.256 0.232 0.184 0.328 0.288
0.2 3 0.288 0.256 0.336 0.328 0.32 0.328 0.304 0.336
0.4 1a 0.824 0.8 0.68 0.688 0.688 0.688 0.88 0.848
0.4 1b 0.888 0.864 0.688 0.64 0.712 0.736 0.824 0.816
0.4 2 0.824 0.768 0.68 0.696 0.776 0.76 0.872 0.88
0.4 3 0.832 0.832 0.672 0.672 0.656 0.64 0.8 0.776
0.6 1a 1 1 0.96 0.96 0.912 0.92 0.984 0.976
0.6 1b 1 0.984 0.92 0.928 0.984 0.968 0.992 0.976
0.6 2 0.992 0.992 0.92 0.936 0.928 0.928 0.992 1
0.6 3 0.992 1 0.912 0.88 0.928 0.952 0.976 0.96
0.8 1a 1 1 1 1 0.992 0.992 1 1
0.8 1b 1 1 0.976 0.96 0.992 0.992 1 1
0.8 2 1 1 0.968 0.968 1 0.992 1 1
0.8 3 1 1 0.976 0.984 1 0.992 1 1
1 1a 1 1 0.992 0.992 1 1 1 1
1 1b 1 1 0.992 0.992 1 1 1 1
1 2 1 1 0.992 0.992 1 1 1 1
1 3 1 1 1 1 1 0.992 1 1

Table 6.9: Type 1 error rates for data type 1 underestimate, while they are
inflated for data type 2, and relatively the same for data types 3 and C. In
other words, permutation methods are minimizing type 1 error at roughly the
same rate, and data structure seems a stronger indicator of their variability
in performance. Once again, higher rejection rates are achieved for lower
coefficients of β2, such as β2 = 0.8 and β2 = 0.6 than in Table 6.8.

6.9 Incremental β3, Variable β1 and β4

Finally, this section will introduce a variable β4 into the data structure. Since
data type 3 is the only one which includes the variable xi4 in its population,
it’s expected that all other data structures will provide similar results to
Figure 6.9 and Figure 6.10, given some normal variability is expected between
reproductions of these simulations.
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Figure 6.11: For sample size n = 15.
Power: The addition of a fourth varying coefficient served to reduce devi-
ation across the data structures. Presumably, it allowed for more iterations
with the same results for those which do not contain β4, and this resulted in
a stronger consensus across rejection rates for different β2 and β3. Even in
data structure 3, which contains xi4 in its population, there is less variation
in power between coefficient sizes of β3 and β2. Lower values for coefficient
β3, such as β3 = 0.2 and 0.4 are rejecting at higher rates across data type 2
and 3.
Size: Allowing for variation of β4 also improved the ability of both ap-
proaches to approximate a rejection rate of 0.05 across values of β3 when
β2 = 0.
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Figure 6.12: For sample size n = 60.
Power: As with all other scenarios, an increase in sample size leads to an
increase in rejection rate for lower values of β2. Although there is more
variability displayed in power for data structures 2 and 3, there is overall
much more consensus in rejection rates across all variables. But if this paper
is nitpicking, permutation methods appear particularly poorer for method
2 and data structure 3 with large coefficients of β3, just as it did in Figure
6.10. The previous outperformance of rejection rates for β3 = 0.2 and 0.4 in
comparison to β30.6, 0.8, and 1.0 for data types 2 and 3 mentioned in Figure
6.11 is no longer present.
Size: Size does not appear to have improved in controlling tests at a rejection
rate of 0.05 despite the increase in sample size to n = 60.
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Chapter 7

Discussion

Recall, the purpose of this paper is to discern if the näıve permutation (per-
mutation method 2) is in fact as problematic as described in literature. Per-
mutation method 2 follows logic in the sense that the user permutes the
variable of interest, xi2, in the inference test. Other permutation methods
described involve permutation of the response variable and residuals in order
to inquire about xi2. For this reason, this paper criticizes these methods
as less accessible and straightforward than that of the näıve permutation.
In order to dissect this argument, all permutation methods described were
run in comparative simulations, as was OLS. The results of these simula-
tion studies allow this paper to discuss the validity of the pertinent question
regarding the näıve permutation. The method can be compared not only
across permutation methods, but across the popular OLS method.

For β2 = 0 in the tables of the previous section, it’s intended that the
rejection rate approximate the significance level α = 0.05. In comparison to
OLS and other methods, permutation method 2 consistently returns a size
of 0 until the scenario described in Figure 6.7. Once the variation of β3 is
introduced, permutation method 2 performs at the same level or worse (for
control data structure) than OLS. This trend continues into Figure 6.9 where
the näıve permutation method is in fact better than OLS for data types 2
and 3. With two variable coefficients, permutation method 2 is increasingly
better at approximating the size at 0.05, and this continues to be true as
sample size increases.

Beginning with β2 = 0.2, the discussion switches to whether permutation
method 2 is better than OLS at rejecting the null hypothesis. With all coef-
ficients aside form β2 set at zero, OLS sometimes outperforms permutation
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method 2, while other times, the opposite is the case. With only five reps,
there is some obvious variation in the values returned by OLS and the permu-
tation test. Neither differ significantly from the other in this scenario until
an increase in sample size, where OLS outperforms permutation method 2
under data types 2 and 3. In the scenario given by Figure 6.3 where β1 is
variable, OLS either equates or outperforms the näıve permutaion for both
sample sizes across data types. The same outperformance is seen ampli-
fied in Figure 6.7. However in Figure 6.9, the difference between these two
approaches becomes hundredths of a decimal place for both sample sizes.

The other coefficients continue on with many similar patterns to those
described above. Since the variation of the OLS rejection rates and conse-
quently, likely the permutation rejection rates as well suggests the necessity
for more extensive simulations and reproducible results, this paper will cease
to discuss further simulated scenarios (i.e., non-normally distributed data
and errors, larger sample sizes, and smaller increments in coefficient size, to
name a few suggestions for research).

Finally, this paper suggests it would be helpful to know exact values of
the variable β1, β3, and β4, rather than simply βi 6= 0, so the result of their
interaction with an incremental β2 can be assessed for patterns in rejection
rates. In the rejection rates, multiples of 0.04, then 0.04, were seen. This
hints at an issue in averaging across simulations. Furthermore, this paper
expected to see more consistency in OLS rejection rates across permutation
methods for each data type. The fact that this consensus was not present
points to errors in the simulation of results, since OLS rejection rates were
more consistent with permutation rejection rates. The goal of this paper was
to find evidence of how the näıve permutation, permutation method 2, varied
from other permutation methods and OLS rejection rates across different
scenarios of data structures. However, permutation method 2 did not seem
to perform substantially worse than other permutation methods. In fact,
permutation methods in general did not appear to significantly underperform
in comparison to OLS in this simulation study. This conclusion suggests an
easily accessible permutation method is nearly as reliable as the favored OLS
in hypothesis testing.
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