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Abstract

This paper examines the implications of different permutation methods in the
context of testing the significance of a single partial regression coefficient in a
multiple linear regression model. The methods compared were permutation
of the response variable, permutation of the predictor variable in question,
and two methods of permutation of residuals—one under the reduced model
and one under the full model. We used simulations to empirically explore the
effects of (1) the sample size, (2) the magnitude of the covariable’s parameter,
and (3) the correlation between the predictor variables. It was found that there
were no substantial differences in size or power among the four permutation
methods under a normal errors structure. The simulation results showed that
power increases with larger sample sizes, larger predictor variable coefficient
magnitudes, and smaller correlation between the predictor variables.
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Chapter 1

Statistical Inference

Statistics is the science of collecting, wrangling, visualizing, and analyzing data
from a smaller sample in order to say something about a bigger population as
a whole. In particular, inferential statistics use a sample intended to produce
results that can be generalized to a larger population of interest.

1.1 Simple Linear Regression

In this chapter, we will be talking about linear models, which describe a linear
relationship between a predictor (or explanatory) variable and the expected
value of an outcome variable. The simplest form of this model, otherwise
known as simple linear regression (SLR), involves exactly two variables and
assumes the following model:

Y = β0 + β1X + ε

where Y is the response variable, X is the predictor variable, and ε is the
random error term. The parameters β0 and β1 describe the “true” intercept
and slope respectively, but for this type of question, we are interested in the
impact of X on predictions of Y . In fact, this leads into a technique called
hypothesis testing, which can be broken down into:
Null Hypothesis: Denoted H0, this is usually set up as the baseline and
assumed to be true unless proven otherwise. In SLR, a null hypothesis that
is commonly used is

H0 : β1 = 0.
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In other words, there is no linear relationship between the predictor and
response variable.
Alternative Hypothesis: Denoted Ha, this usually represents what we
believe to be true and want to show. This tends to take the form of the
parameter somehow not being equal to the value used in H0. The alternative
hypothesis to the null hypothesis stated above may look like:

Ha : β1 6= 0

In words, this would mean there is a non-zero linear relationship between the
predictor variable and response variable. It could be a negative relationship
or a positive relationship, since we did not specify whether β1 > 0 or β1 < 0,
which are other viable alternative hypotheses.

Like most models, SLR comes with its own set of technical conditions
that must be checked before proceeding with normal theory methods (i.e.,
the t-test) to ensure set Type I error rates (Kutner et al., 2005, pp. 9-10).

1.1.1 Technical Conditions of SLR

1. Condition of linearity: The relationship between the predictor vari-
able and response variable should be linear; otherwise, a different model
may make more sense to model a non-linear relationship. Thus, the
data should follow the structure Y = β0 + β1X + ε. In addition, we are
assuming the mean of ε is 0. This is important because we want

E[Y |X] = µY |X = β0 + β1X,

where µ is the mean. That is, the expected value of Y at some value of
X is given by β0 + β1X.

2. Condition of independence: Every observation should be indepen-
dent from the rest. One observation should not carry any information
that can be inferred by another observation in the dataset. A simple
random sample tends to produce unbiased samples with independent
observations that are representative of the population.

3. Condition of constant variance: The error terms from the model
should not only have a mean of 0 but also have a constant variance of
σ2 for any value of X. If our data is showing signs of heteroskedasticity,

2



which is when variance is non-constant across different values of the
predictor variable, it may be worthwhile to either transform the dataset
(e.g., taking the log transformation) or use a different model.

4. Condition of normal distribution: The last assumption is that
errors are distributed normally. Normal distributions are common and
come with nice properties that are easier to work with.

1.1.2 Permutation Tests for SLR Models

In contrast to the t-test, which is used if all the technical conditions mentioned
in Section 1.1.1 hold, we can apply a permutation test to assess the same
hypotheses under less stringent conditions. Let’s say we wanted to test
whether the true slope of X, otherwise known as β1, was 0 or positive. Then
we would formulate the following hypotheses:

H0 : β1 = 0

Ha : β1 > 0

First, fit a linear model on the data and record the original sample slope,
b1, and find the t-statistic associated with this value.

Then comes the permutation component. When doing a permutation test
for an SLR model in the form of E[Y ] = β0 + β1X, note that permuting the
predictor variable, X, has the same effect as permuting the response variable,
Y , since these are the only variables in the model. By permuting either
variable and reassigning different values of X to different values of Y , we are
effectively breaking any possible relationship that may have existed between
X and Y . In other words, the permutation forces the null hypothesis, H0, to
be true.

Without loss of generality, assume that we permute the response variable
Y to get Y ∗. From this permuted dataset, we fit a linear model of Y ∗ on
X, find the sample slope b∗1, and calculate the standardized sample slope
statistic, t∗ = (b∗1−0)/se(b∗1), where se(b∗1) is the standard error of b∗1 calculated
from the permuted dataset. Repeated permutations of the data result in
the construction of a null distribution of t∗ values (since we are forcing H0

to be true through permutations), from which a p-value can be obtained by
counting how many of the simulated t∗-statistics were at least as extreme
as tobs. Note that although we use the letter t to describe the test statistic,
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we do not use the t-distribution to calculate p-values mathematically for
permutation tests. In this paper, we will use a significance level of α = 0.05
and reject H0 if p < 0.05.

What if the expected value of Y is a linear function of multiple predictor
variables? Then, this would require a multiple linear regression model.

1.2 Multiple Linear Regression

Consider the following linear model involving multiple predictor variables:

Y = β0 + β1X1 + β2X2 + · · ·+ βp−1Xp−1 + ε

where Y is the response variable; X1, X2, . . . , Xp−1 are the predictor variables;
and ε is the random error term. In multiple linear regression (MLR), we have
p− 1 predictor variables thanks to the true intercept, β0, which adds up to p
parameters in total.

1.2.1 Types of Multiple Regression

Qualitative predictor variables: Predictor variables do not always have
to be continuous. If you have categorical variables in your model, you would
need to write it as one (or more) binary variables. For instance:

X2 =

{
0 if weekend

1 if weekday

If a categorical variable has k levels, you generally need k − 1 “dummy”
variables to represent all possible values. The case where all dummy variables
equal 0 represents the k-th level.
Interaction effects: In some cases, the predictor variables in your model
may interact with each other. Perhaps X2 has a different impact on Y
depending on the level of X1. A model with two predictor variables that
takes into account their interaction may look like:

Y = β0 + β1X1 + β2X2 + β3X1X2 + ε

where the interaction is multiplicative.
Polynomial regression: The best model may also be a function of a poly-
nomial of a predictor variable:

Y = β0 + β1X + β2X
2 + ε

4



1.2.2 Permutation Tests for MLR Models

For the sake of simplicity, we will consider only X1 and X2 as the predictor
variables in our model of interest. That is,

Y = β0 + β1·2X1 + β2·1X2 + ε

where we borrow the following notation used by Anderson and Legendre (1999,
p. 273): β1·2 denotes the partial regression coefficient for the relationship
between X1 and Y while taking into consideration the effect of X2, and
similarly for β2·1.

Now we have a new challenge. Suppose that we are trying to use X1

and X2 to predict the response variable Y . Somehow, we know that X1 is
essential to our model, but we want to check whether we actually also need
X2 in our model, or if simply regressing Y against X1 is enough. Then, we
would formulate the following hypotheses:

H0 : β2·1 = 0

Ha : β2·1 6= 0

H0 says that the variable X2 does not add any additional information to our
model in predicting Y , whereas Ha proposes that X2 adds information in
predicting Y since β2·1 is not equal to 0, even when X1 is in the model.

However, we now have three variables to pick from for permutations. The
crucial question is, which variable should be permuted to test our hypotheses?
Or should we use a different permutation strategy?

In the next chapter, we will investigate one proposed method that involves
permuting the Y values.
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Chapter 2

Permutation of the Response
Variable

To perform permutation tests for MLR models, Manly (1986, 1997) proposed
randomly assigning values of the response variable, Y , to the sets of X
values. The rationale behind permuting the response variable is that if Y
is independent from all Xs, then Y values should be equally likely to occur
with any sets of X values.

2.1 Procedure

The response variable permutation strategy as described by Anderson and
Legendre (1999) is given by the following algorithm:

1. Regress the response variable Y on the predictor variables X1 and X2,
which calculates the sample intercept b0, sample slopes b1·2 and b2·1,
and residuals RY |1,2:

Y ∼ X1 +X2 =⇒ Y = b0 + b1·2X1 + b2·1X2 +RY |1,2

Use b2·1 to calculate the observed t-statistic, where tobs = b2·1/se(b2·1).
Save this tobs for the last step.

2. Permute Y to get Y ∗.

3. Regress Y ∗ on X1 and X2, which outputs b∗0, b
∗
1·2, b

∗
2·1, and R∗Y |1,2:

Y ∗ ∼ X1 +X2 =⇒ Y ∗ = b∗0 + b∗1·2X1 + b∗2·1X2 +R∗Y |1,2
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The statistics and residuals from this equation have asterisks (∗) to
signify that they come from modified (permuted) data. Save b∗2·1 and
use it to calculate t∗, where t∗ = b∗2·1/se(b∗2·1).

4. Repeat Steps (2)-(3) many times to obtain a distribution of t∗ values
from many permutations.

5. Calculate the p-value of tobs. Reject H0 if p < 0.05.

2.2 Considerations of Manly’s Method

The impact of this permutation strategy on the relationships between the
variables can be summarized as follows:

Broken Relationships Preserved Relationships

X1 & Y X1 & X2

X2 & Y

We infer that Manly’s method may be appropriate if X1 and X2 are
related, since it may be of interest to preserve the relationship between them
in order to accurately make use of the data.

On the other hand, permuting Y gets in the way of isolating the effect of
X2 when X1 is in the model. This was not a problem in SLR, which only had
one predictor variable, X, and permuting X was algorithmically equivalent
to permuting Y . Here, however, we are dealing with both X1 and X2. Since
X1 is already contributing to Y in the model, we are unable to isolate the
effect of X2 by simply permuting Y .

What if we wanted to do a better job of isolating the additional impact of
X2 on a model that already includes X1? In the next chapter, we will discuss
a method that proposes permuting the variable of interest, X2.
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Chapter 3

Permutation of the Predictor
Variable

Draper and Stoneman (1966) proposed permuting values of the predictor
variable of interest—in our case, X2—to perform permutation tests. Draper
and Stoneman’s method may be appropriate in a situation where the treatment
is randomly assigned and the driving question is whether this treatment
variable had any impact on the response Y , after taking into consideration
the effect of other covariates in the model (Manly, 1997). Since a randomly
assigned treatment variable will inherently be independent from the pre-
existing covariates, permuting the treatment variable will not violate any
relationships that may have existed between the treatment and the other
covariates, as there was none to begin with.

3.1 Procedure

The predictor variable permutation strategy is given by the following algo-
rithm:

1. Regress the response variable Y on the predictor variables X1 and X2,
which calculates the sample intercept b0, sample slopes b1·2 and b2·1,
and residuals RY |1,2:

Y ∼ X1 +X2 =⇒ Y = b0 + b1·2X1 + b2·1X2 +RY |1,2

Use b2·1 to calculate the observed t-statistic, where tobs = b2·1/se(b2·1).
Save this tobs for the last step.

8



2. Permute X2 to get X∗2 .

3. Regress Y on X1 and X∗2 , which outputs b∗0, b
∗
1·2, b

∗
2·1, and R∗Y |1,2:

Y ∼ X1 +X2 =⇒ Y = b∗0 + b∗1·2X1 + b∗2·1X
∗
2 +R∗Y |1,2

The statistics and residuals from this equation have asterisks (∗) to
signify that they come from modified (permuted) data. Save b∗2·1 and
use it to calculate t∗, where t∗ = b∗2·1/se(b∗2·1).

4. Repeat Steps (2)-(3) many times to obtain a distribution of t∗ values
from many permutations.

5. Calculate the p-value of tobs. Reject H0 if p < 0.05.

3.2 Considerations of Draper and Stoneman’s

Method

The impact of this permutation strategy on the relationships between the
variables can be summarized as follows:

Broken Relationships Preserved Relationships

X1 & X2 X1 & Y

X2 & Y

Note that this method of permutation preserves the relationship between X1

and Y , which is nice since we want to isolate the additional impact of X2 in
our model.

Draper and Stoneman’s method may be appropriate if X2 is independent
of X1 (or however many other covariates there may be), such as in situations
akin to a clinical trial. For instance, imagine covariates X1, X2, . . . , Xj to
be a patient’s demographic or biographic information, and Xj+1 to be a
randomly assigned treatment that has no relation to the covariates. So,
X1, X2, . . . , Xj could be someone’s age, fitness level, height, etc., while X2

could be a randomly assigned drug. Since the treatment is random, a person’s
health background will have nothing to do with the treatment they get, so
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breaking the relationship between X1 and X2 by permuting X2 would not be
problematic.

On the other hand, permuting X2 may be unsuitable when X1 and X2

are indeed related. Rearranging values of X2 would ignore any relationship
between the predictor variables; therefore, the predictor variable permutation
strategy will not be able to accurately measure the additional impact of
having X2 in the model.

What if we wanted a method that not only preserves the relationship
among predictor variables X1 and X2 but also preserves the relationship
between X1 and Y ? Is there such a method?
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Chapter 4

Permutation Of Residuals

The third technique discussed in this paper involves permuting neither the
response variable nor the predictor variable of interest. Instead, both Freed-
man and Lane (1983) and ter Braak (1992) have proposed algorithms that
randomly shuffle the residuals from a linear model. While there are similarities
between the two algorithms, slight differences may result in different power
depending on the characteristics of the data.

4.1 Permutation of Residuals Under the Re-

duced Model

The permutation strategy by Freedman and Lane (1983) focuses on the
observed residuals from a restricted model, where the coefficient(s) of interest
are set to 0, as the permutable units for the test. Anderson and Legendre
(1999) refer to this method as the permutation of residuals under the reduced
model. This name comes from the part of the procedure that relies on forcing
the null hypothesis (β2·1 = 0) to be true, because β2·1 = 0 reduces the model
to:

Y = β′0 + β′1X1 + ε′

where β′0 is the intercept and β′1 is the regression coefficient for the relationship
between X1 and Y without controlling for the effect of X2. The random error
ε′ is treated as the stochastic element and separated from each value of Y , as
you will see in Section 4.1.1.
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4.1.1 Procedure

The reduced model residual permutation strategy, as described by Anderson
and Legendre (1999), is given by the following algorithm:

1. Regress the response variable Y on the predictor variables X1 and X2,
which calculates the sample intercept b0, sample slopes b1·2 and b2·1,
and residuals RY |1,2:

Y ∼ X1 +X2 =⇒ Y = b0 + b1·2X1 + b2·1X2 +RY |1,2

Use b2·1 to calculate the observed t-statistic, where tobs = b2·1/se(b2·1).
Save this tobs for the last step.

2. Regress Y on X1 alone, which outputs b′0, b
′
1, and RY |1:

Y ∼ X1 =⇒ Y = b′0 + b′1X1 +RY |1 (4.1)

Here, the statistics have prime symbols (′) to signify that they come
from the reduced model. Keep b′0, b

′
1, and RY |1 for later.

3. Permute RY |1 to get R∗Y |1.

4. Add the permuted residuals R∗Y |1 to the fitted values, using b′0 and b′1
from Equation (4.1), and calculate synthetic values for the response
variable, denoted Y ∗:

Y ∗ = b′0 + b′1X1 +R∗Y |1

5. Regress Y ∗ on X1 and X2, which outputs b∗0, b
∗
1·2, b

∗
2·1, and R∗Y |1,2:

Y ∗ ∼ X1 +X2 =⇒ Y ∗ = b∗0 + b∗1·2X1 + b∗2·1X2 +R∗Y |1,2

The statistics and residuals from this equation have asterisks (∗) to
signify that they come from modified (synthetic reponse variable) data.
Save b∗2·1 and use it to calculate t∗, where t∗ = b∗2·1/se(b∗2·1).

6. Repeat Steps (3)-(5) many times to obtain a distribution of t∗ values
from many permutations.

7. Calculate the p-value of tobs. Reject H0 if p < 0.05.
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4.1.2 Considerations of Freedman and Lane’s Method

The impact of this permutation strategy on the relationships between the
variables can be summarized as follows:

Broken Relationships Preserved Relationships

X2 & Y (if X1 & X2 X1 & X2

are not highly collinear) X1 & Y

In order to use this procedure, Freedman and Lane (1983) emphasize that
the data should not have any extreme outliers, and X1 and X2 should not be
highly collinear. This is because the null hypothesis, H0 : β2·1 = 0, cannot be
enforced when the correlation between X1 and X2 is too high.

To elucidate this concept, we use ρ(X1, X2) to denote the correlation co-
efficient between the random variables X1 and X2. The correlation coefficient
informs us to what extent the variables are linearly associated and ranges
from -1 to 1. (Note that when H0 : β2·1 = 0 is true, the correlation coefficient
of Y ∗ and X2 should be near 0, i.e., ρ(Y ∗, X2) = 0.) We claim that the
correlation of Y ∗ and X2 is dependent on that of X1 and X2.

Claim. The correlation between Y ∗ and X2 is dependent on the correlation
between X1 and X2.

Proof.

ρ(Y ∗, X2) =
cov(Y ∗, X2)√
var(Y ∗)var(X2)

where cov(Y ∗, X2) = cov(b′0 + b′1X1 +R∗Y |1, X2)

= cov(b′0, X2) + cov(b′1X1, X2) + cov(R∗Y |1, X2)

= cov(b′1X1, X2) (4.2)

≈ b′1 · cov(X1, X2) (4.3)

= b′1 · ρ(X1, X2)
√
var(X1)var(X2)

var(Y ∗) = var(b′0 + b′1X1 +R∗Y |1)

≈ (b′1)
2var(X1) + var(R∗Y |1) (4.4)

var(R∗Y |1) = var(RY |1)
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= var(Y − b′0 − b′1X1)

≈ var(Y ) + (b′1)
2var(X1)− 2b′1cov(Y,X1) (4.5)

cov(Y,X1) = cov(β0 + β1·2X1 + β2·1X2 + ε,X1)

= cov(β0, X1) + cov(β1·2X1, X1)

+ cov(β2·1X2, X1) + cov(ε,X1)

= β1·2var(X1) + β2·1cov(X2, X1) (4.6)

which means var(Y ∗) ≈ (b′1)
2var(X1) + var(Y ) + (b′1)

2var(X1)

− 2b′1[β1·2var(X1) + β2·1cov(X2, X1)]

= 2(b′1)
2var(X1) + var(Y )

− 2b′1[β1·2var(X1) + β2·1cov(X2, X1)]

= 2b′1(b
′
1 − β1·2)var(X1) + var(Y )− 2b′1β2·1cov(X2, X1)

= 2b′1[(b
′
1 − β1·2)var(X1)− β2·1cov(X1, X2)] + var(Y ),

so putting it all together gives us

ρ(Y ∗, X2) =
cov(Y ∗, X2)√
var(Y ∗)var(X2)

≈
b′1 · ρ(X1, X2)

√
var(X1)var(X2)√

var(Y ∗)var(X2)

=
b′1 · ρ(X1, X2)

√
var(X1)√

var(Y ∗)

=
b′1 · ρ(X1, X2)

√
var(X1)√

2b′1[(b
′
1 − β1·2)var(X1)− β2·1cov(X1, X2)] + var(Y )

(4.7)

Note that b′1 is a random variable because it is a statistic, so Equations (4.3)
to (4.5) are all approximate. In Equation (4.2), we assume that b′0 and R∗Y |1
are both independent of X2, so cov(b′0, X2) = cov(R∗Y |X1

) = 0. Similarly, we

also assume independence in Equation (4.6), leading to cov(β2·1X2, X1) =
cov(ε,X1) = 0. These approximations are validated empirically; see Fig-
ure 4.1.

Thus, ρ(Y ∗, X2) is dependent on ρ(X1, X2). Due to this dependency, if
X1 and X2 are too highly correlated, Freedman and Lane’s algorithm will not
produce Y ∗ values such that ρ(Y ∗, X2) = 0 in Step (4). This is something to

14



Simulation Values

n 20, 40, 80

β1·2 0.5, 1.0, 2.5

β2·1 0.00, 0.25, 0.50, 0.75, 1.00

ρ(X1, X2) 0.0, 0.5, 0.9

Table 4.1: Different iterations of values used to generate the datasets for
assessing the approximation of ρ(Y ∗, X2). Every possible combination of
these values was used, resulting in 135 different parameter configurations for
the simulations.

keep in mind because the null hypothesis, β2·1 = 0, cannot be enforced when
ρ(Y ∗, X2) is not driven to 0. Under this condition, the algorithm would not
be able to produce a null sampling distribution of t∗.

We performed simulations in R to empirically assess Equation (4.7) with
regard to the sample size (n), the size of the covariable’s parameter (β1·2), the
size of the coefficient of interest (β2·1), and the correlation between X1 and X2

(ρ(X1, X2)), as seen in Table 4.1. Simulations were run for all combinations
of these factors, which summed up to 135 different parameter configurations.
For each configuration, 1,000 datasets were generated using the mvrnorm()

function from the MASS library. In each dataset, values of Y ∗ were calculated
from a permuted version of the dataset 1,000 times for a total of 1,000 sample
correlations between Y ∗ and X2 per dataset. The average of these sample
correlations was recorded for each configuration and denoted by ĉorr(Y ∗, X2)
in Figure 4.1.

There was almost perfect overlap between the theoretical ĉorr(Y ∗, X2)
(in red) from our formula and the empirical average ĉorr(Y ∗, X2) (in blue)
in all of the subplots, which means we were able to successfully demonstrate
that ρ(Y ∗, X2) is highly dependent on the correlation between X1 and X2.
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Figure 4.1: Density plots for datasets of n = 80 observations generated from
β2·1 = 0.0, β2·1 = 0.5, and β2·1 = 1.0. ĉorr(Y ∗, X2) indicates the average of
the average correlation between Y ∗ and X2 from permutations of each dataset.
The theoretical ĉorr(Y ∗, X2) that is approximated from Equation (4.7) is
plotted in red, while the average ĉorr(Y ∗, X2) from the simulations is plotted
in blue. Due to the overwhelming extent to which the empirical results aligned
with the theoretical value calculated using Equation (4.7), it is rather difficult
to identify the blue line.
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On the other end of the spectrum, if X1 and X2 are entirely uncorrelated,
then the method works, but it might be uninteresting. If ρ(X1, X2) = 0, we
cannot have both ρ(X1, Y ) and ρ(X2, Y ) be big in magnitude, since X1 and
X2 supposedly have no correlation.

ρ(X1, X2) = 0 & ρ(X1, Y ) = high =⇒ ρ(X2, Y ) = low

ρ(X1, X2) = 0 & ρ(X2, Y ) = high =⇒ ρ(X1, Y ) = low

Hence, as long as X1 and X2 are not highly collinear, we can demonstrate
how the process of calculating new Y ∗ values will successfully break any
possible relationship found between X2 and Y in X2 and Y ∗. Moreover,
this method preserves the relationships between Y and X1, X1 and X2, and
among all the predictor variables.

Y ∗ and X1 maintain similar degrees of collinearity as Y and X1 because
Y and Y ∗ are regressed against X1 in both the full and reduced models
respectively. Since one of the assumptions of linear regression is that errors
are normally distributed with constant variance, shuffling the residuals RY |1
and adding them back to calculate new Y ∗ values would emulate a similar
relationship between that of Y and X1.

To provide a visual demonstration of which relationships are preserved
and which are broken through Freedman and Lane’s permutation strategy,
Figure 4.2 displays the linear relationships between X1, X2, residuals from
the reduced model, and the response variable—either the original Y values,
or Y ∗ calculated after one permutation of the residuals from the reduced
model. For the purposes of this demonstration, this dataset was generated
from a normal distribution with β0 = 5, β1·2 = 30, β2·1 = 30, µ = 0, σ = 5,
and ρ(X1, X2) = 0.4 (which is considered a medium-low correlation). On
the diagonal are the univariate density plots for each variable. By looking
at the scatterplot between X2 and Y in Figure 4.2a, there is evidence of a
linear relationship between the two variables. However, after permuting the
residuals from the reduced model to calculate the synthetic response variable
Y ∗, in Figure 4.2b, we find that that relationship seems to have disappeared
in the scatterplot between X2 and Y ∗.

Figures 4.3 and 4.4 show different angles of a 3D scatterplot between X1,
X2, and either Y or Y ∗. These scatterplots display how the linear relationship
between X1 and Y is generally maintained between X1 and Y ∗, while the
relationship between X2 and Y is practically nullified between X2 and Y ∗.
The color of the points indicate how positive (red) or negative (blue) the
associated residual from the reduced model is.
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(a) Pairs plot of X1, X2, reduced model residuals, and Y

(b) Pairs plot of X1, X2, permuted reduced model residuals, and Y ∗

Figure 4.2: (a) shows the scatterplot matrix of variables and unpermuted
residuals from the reduced model. (b) shows the scatterplot matrix after
permutation. The dataset was generated from a normal distribution with
β0 = 5, β1·2 = 30, β2·1 = 30, µ = 0, σ = 5, and ρ(X1, X2) = 0.4. Note
that ρ(X1, Y

∗) = 0.848 in (b) remains almost as high as ρ(X1, Y ) = 0.868
in (a), while ρ(X2, Y

∗) = 0.060 is almost entirely nullified in comparison to
ρ(X2, Y ) = 0.762. 18



(a) 3D plot projected onto X1 and Y

(b) 3D plot projected onto X2 and Y

Figure 4.3: Two different views of a 3D scatterplot between X1, X2, and
Y . The color of each point indicates how positive (red) or negative (blue)
the original associated residual from the reduced model is. Both (a) and
(b) display a strong correlation between X1 and Y and between X2 and Y ,
respectively.
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(a) 3D plot projected onto X1 and Y ∗

(b) 3D plot projected onto X2 and Y ∗

Figure 4.4: Two different views of a 3D scatterplot between X1, X2, and
Y ∗. The color of the points indicates how positive (red) or negative (blue)
the original associated residual from the reduced model is. (a) still shows a
general positive linear relationship between X1 and Y , imitating that found
in Figure 4.3a, while the positive linear relationship between X2 and Y in
Figure 4.3b is no longer visible between X2 and Y ∗ in (b).
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4.2 Permutation of Residuals Under the Full

Model

The following algorithm developed by ter Braak (1990, 1992) is the fourth and
final strategy that we will discuss in this paper. Like Freedman and Lane’s
method in Section 4.1, ter Braak’s strategy also permutes residuals, but this
time, the residuals are obtained from the full model, where Y is regressed
against X1 and X2:

Y = b0 + b1·2X1 + b2·1X2 +RY |1,2

4.2.1 Procedure

The full model residual permutation strategy, as described by Anderson and
Legendre (1999), is given by the following algorithm:

1. Regress the response variable Y on the predictor variables X1 and X2,
which calculates the sample intercept b0, sample slopes b1·2 and b2·1,
and residuals RY |1,2:

Y ∼ X1 +X2 =⇒ Y = b0 + b1·2X1 + b2·1X2 +RY |1,2 (4.8)

Keep b0, b1·2, b2·1, and RY |1,2 for later. Use b2·1 to calculate the observed
t-statistic, where tobs = b2·1/se(b2·1). Save this tobs for the last step.

2. Permute RY |1,2 to get R∗Y |1,2.

3. Add permuted residuals R∗Y |1,2 to the fitted values, using b0, b1·2, and

b2·1 from Equation (4.8), and calculate synthetic values for the response
variable, denoted by Y ∗:

Y ∗ = b0 + b1·2X1 + b2·1X2 +R∗Y |1,2

4. Regress Y ∗ on X1 and X2, which outputs b∗0, b
∗
1·2, b

∗
2·1, and R∗Y |1,2:

Y ∗ ∼ X1 +X2 =⇒ Y ∗ = b∗0 + b∗1·2X1 + b∗2·1X2 +R∗Y |1,2

The statistics have asterisks (∗) to signify that they come from modified
(synthetic reponse variable) data. Save b∗2·1 and use it to calculate t∗,
where t∗ = (b∗2·1 − b2·1)/se(b∗2·1).
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5. Repeat Steps (2)-(4) many times to obtain a distribution of t∗ values
from many permutations.

6. Calculate the p-value of tobs. Reject H0 if p < 0.05.

4.2.2 Considerations of ter Braak’s Method

The impact of this permutation strategy on the relationships between the
variables can be summarized as follows:

Broken Relationships Preserved Relationships

None X1 & X2

X1 & Y

X2 & Y

The permutation of residuals under the full model differs from the method
described in Section 4.1, where permuted residuals came from a linear model
fitted on the predictor variables excluding the one involved in the hypothesis
test.

ter Braak (1992) initially introduced the bootstrap significance test before
motivating its permutation analog, which is the algorithm described in this
chapter. But what is bootstrapping?

Bootstrapping is a technique that involves sampling with replacement
from the dataset, and it can be used to estimate the distribution of a statistic
of interest (Efron and Tibshirani, 1994). For example, if we were interested
in the true slope β2·1 in a linear model where Y is regressed on both X1 and
X2, a possible bootstrap approach would be to sample n observations from
the original dataset with replacement, calculate b∗2·1 (our bootstrap estimate
of β2·1), repeat the former two steps for a total of 1,000 times to eventually
generate 1,000 bootstrapped datasets and corresponding b∗2·1 estimates, and
build a bootstrap sampling distribution using these estimates. The bootstrap
approach is an effective way to estimate the variability associated with b2·1
without needing more observations, because the variability of b∗2·1 around b2·1
imitates the variability of b2·1 around β2·1.

The bootstrap model described by ter Braak (1992) involves calculating
estimates of β2·1—denoted by b+2·1—from synthetic datasets generated from
bootstrapping the residuals of the full model, Y ∼ X1 + X2. To highlight
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the distinction, ter Braak’s bootstrap test takes b+2·1 values from synthetic
datasets where the residuals have been resampled with replacement, whereas
its permutation analog builds a distribution of b∗2·1 values from synthetic
datasets where the residuals have been resampled without replacement. Both
the bootstrap test and its permutation analog estimate the sampling distribu-
tion of t∗ (i.e., the standardized sampling distribution of b2·1), which is used
to estimate the true value of β2·1 in the following assumption:

F

(
b∗2·1 − b2·1
se(b∗2·1)

)
≈ F

(
b2·1 − β2·1

se(b2·1)

)
The sampling distribution of t∗ approximates the sampling distribution of

t due to the theoretical underpinnings from bootstrapping. The variability of
b∗2·1 around b2·1 mimics the variability of b2·1 around β2·1.

Under this assumption, we can use the t∗ distribution constructed from
many permutations of the same dataset to carry out a hypothesis test: if
H0 : β2·1 = 0 is true, then tobs = (b2·1 − 0)/se(b2·1) would be a likely value in
the t∗ distribution, corresponding to an non-significant p-value that results in
failing to reject H0.

However, if Ha : β2·1 6= 0 is true and, say, β2·1 = 47, then we would
expect t̂ = (b2·1 − 47)/se(b2·1) to lie well within the t∗ distribution, while
tobs = (b2·1 − 0)/se(b2·1) would lie on the margins, leading to a small p-value
that concludes the test by rejecting H0.

Furthermore, ter Braak (1992) synthesizes equations from various authors—
Efron (1982) for the bootstrap, along with Cox and Hinkley (1974) and
Lehmann and D’Abrera (1975) for the permutation—to make the following
statements regarding the expected value and variance of both types of esti-
mated slope coefficients. Recall that b+2·1 corresponds to the bootstrap, while
b∗2·1 corresponds to the permutation of the residuals under the full model:

E+(b+2·1) = E∗(b∗2·1) = b2·1 (4.9)

var+(b+2·1) = (1− 1/n)var∗(b∗2·1) (4.10)

which means that the expected values of b+2·1 and b∗2·1 are both b2·1, and that
the variance of b+2·1, the bootstrapped estimates, is smaller than the variance
of b∗2·1. Hence, ter Braak uses Equations (4.9) and (4.10), along with the order
property that b+2·1 and b∗2·1 differ by O(1/n) in second or higher order moments,
to justify his proposal of the full model residual permutation strategy as an
alternative for the bootstrap model (ter Braak, 1992, p. 6).
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Permuting the residuals under the full model preserves any relationships
among the predictor variables as well, which may not be the case as seen in
Draper and Stoneman’s method in Chapter 3. Anderson and Legendre (1999)
also mention that ter Braak’s procedure requires a pivotal statistic, such as
the t-statistic.
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Chapter 5

Simulations

We have discussed the following four permutation strategies:

1. Permutation of the response variable (Manly, 1986, 1997)

2. Permutation of the predictor variable of interest (Draper and Stoneman,
1966)

3. Permutation of the reduced model residuals (Freedman and Lane, 1983)

4. Permutation of the full model residuals (ter Braak, 1990, 1992)

We will assess these four methods of permutation on simulated datasets in
R to determine the most appropriate permutation method under conditions of
known changes to particular factors. Each permutation method is evaluated
based on their Type I error and power.

Previous literature on permutation tests for MLR models found similar
results with differences across methods only when simulating outliers and
non-normal error structures (Anderson and Legendre, 1999). Following the
structure of the simulations from their study, we borrow similar values of β1·2
and β2·1 in our setup.

5.1 Methodology

To evaluate how well the four permutation methods performed under different
settings, we varied the sample size (n), the size of the covariable’s param-
eter (β1·2), the size of the coefficient of interest (β2·1), and the correlation
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Simulation Values

n 20, 40, 80

β1·2 0.5, 1.0, 2.5

β2·1 0.00, 0.30, 0.40, 0.75

ρ(X1, X2) 0.0, 0.5, 0.9

Table 5.1: Different iterations of values used to generate the datasets for
determining the Type I error and power of each of the four permutation
methods. Every possible combination of these values was used, resulting in
108 different parameter configurations for the simulations.

between X1 and X2 (ρ(X1, X2)), as seen in in Table 5.1. All combinations
of these factors were used in generating datasets. Simulations were run for
all combinations of these factors, summing up to 108 different parameter
configurations. For each configuration, 1,000 datasets were generated using
the mvnorm() function from the MASS library to generate X1 and X2, from
which Y was calculated as a linear combination of X1 and X2 plus Gaussian
noise. There were 1,000 permutations done according to each permutation
method per dataset. In the end, there were four p-values—one from each
permutation method—associated with every dataset.

After categorizing datasets by their parameter configuration, Type I error
was calculated by computing how often the test gave a p-value less than 0.05
when β2·1 = 0. Power was calculated in the same way for datasets generated
from nonzero β2·1 values.

5.2 Results

Type I error and power across datasets generated under the 108 parameter
configurations are summarized in the following multi-panel plots, which are
grouped by β2·1 values, with the rejection rate plotted along the y-axis and
β1·2 values plotted along the x-axis.
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5.2.1 Examination of Type I Error

Figure 5.1 displays the Type I error of different data configurations (when
β2·1 = 0). The four methods generally appear to have a Type I error rate
around α = 0.05, though the plot with ρ(X1, X2) = 0.0 and n = 80 and the
plot with ρ(X1, X2) = 0.9 and n = 40 suggest inflated Type I error rates.
Most plots show similar trends across methods, but there seems to be more
variation in the plot with ρ(X1, X2) = 0.9 and n = 40: Freedman and Lane’s
method goes up at β1·2 = 1.0 and goes down at β1·2 = 2.5; Draper and
Stoneman’s method first dips and stays the same; ter Braak’s method steadily
increases; and Manly’s method steadily decreases. There was no consistent
trend in Type I error as ρ(X1, X2) or n increased.

Figure 5.1: Type I error (when β2·1 = 0) is plotted along the y-axis, while β1·2
is plotted along the x-axis. Different methods are denoted by their colors. A
horizontal line has been graphed to indicate the significance level, α = 0.05.
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5.2.2 Examination of Power

Figure 5.2 displays the power of different data configurations with β2·1 = 0.3.
All four methods display a decrease in power with increasing ρ(X1, X2) and
an increase in power with increasing n. There appears to be more variation
across the methods as β1·2 increases for the plots with n = 20, 40 aside for
the plot with ρ(X1, X2) = 0.9 and n = 40.

Figure 5.2: Power when β2·1 = 0.3 is plotted along the y-axis, while β1·2 is
plotted along the x-axis. Different methods are denoted by different colors.
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Figure 5.3 displays the power of different data configurations with β2·1 =
0.4. All plots look similar to those displayed in Figure 5.2 except for the
plot with ρ(X1, X2) = 0.0 and n = 80 and the plot with ρ(X1, X2) = 0.9
and n = 20, both of which seem to have opposite patterns. There are fewer
plots that show considerable deviations in patterns across the methods, most
notably in the plot with ρ(X1, X2) = 0.5 and n = 40. Not surprisingly, power
when β2·1 = 0.4 is higher in all situations than when β2·1 = 0.3. We observe
some similar trends as those found in Figure 5.2, where power increases with
bigger n and smaller ρ(X1, X2).

Figure 5.3: Power when β2·1 = 0.4 is plotted along the y-axis, while β1·2 is
plotted along the x-axis. Different methods are denoted by different colors.
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Figure 5.4 displays the power of different data configurations with β2·1 =
0.75. All plots seem to follow the same trends; the only line that just barely
stands out is ter Braak’s method in the plot with ρ(X1, X2) = 0.0 and n = 20,
though it is also decreasing with increasing β1·2 like the other three methods.
Not surprisingly, power when β2·1 = 0.75 is higher in all situations than when
β2·1 = 0.3, 0.4. We observe some similar trends as those found in Figures 5.2
and 5.3, where power increases with bigger n and smaller ρ(X1, X2). In fact,
power maxes out at 1.0 for all methods when n = 80 and ρ(X1, X2) = 0.0, 0.5.

Figure 5.4: Power when β2·1 = 0.75 is plotted along the y-axis, while β1·2 is
plotted along the x-axis. Different methods are denoted by different colors.
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Chapter 6

Discussion

Based on the results of the simulation study in Chapter 5, there are no notable
differences in Type I error or in power across the four permutation methods.
These results were a bit unexpected for the following considerations:

1. Manly’s method of permuting the response variable would break the
relationship between X1 and Y , as mentioned in Section 2.2. This
was expected to hinder an accurate isolation of the additional effect of
adding X2 to a model that already accounts for X1.

2. Draper and Stoneman’s method of permuting the predictor variable of
interest would break the relationship between X1 and X2, as mentioned
in Section 3.2. This seemed to be problematic in circumstances where
X1 and X2 are indeed related in the data.

3. Freedman and Lane’s method of permuting the reduced model residuals
would fail to force H0 to be true if ρ(X1, X2) was too high, as mentioned
in Section 4.1.2.

Thus, it is a little surprising that despite all these aforementioned caveats,
the four permutation methods performed rather similarly across all 108
combinations of different factors. Our results are consistent with a previous
study done by Anderson and Legendre (1999), who did not find any significant
differences on datasets without outliers and with normal error structures.
(Both of these conditions also describe the datasets used in our simulation.)

It is possible that the reason why all four methods were so correlated is in
part due to only generating 1,000 datasets—as opposed to 10,000 datasets in
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Anderson and Legendre (1999)—for each combination. It would be worthwhile
to perform more analysis on the variability among different datasets (that
were unfortunately not kept after the simulations were finished), which may
be driving the observed trends in power moreso than increasing values of β1·2
are. Thus, more simulations and analysis should be done before believing
in the spikey patterns shown in Figures 5.1 to 5.4. Though these patterns
do not align much with the corresponding plots in Anderson and Legendre
(1999), the general range of Type I error rates and power are comparable
under similar situations (roughly within ±0.01 bounds).

Datasets with interaction between the predictor variables, extreme outliers,
and non-normal error structures were not simulated in this paper due to
time constraints, but it would be a viable future direction that would be
helpful in expanding upon this study. Future studies in this field should also
employ even more generated datasets (e.g., at least 10,000) for each parameter
configuration. In addition, further analysis should be carried out to assess the
variability among datasets to see what is actually driving patterns in Type I
error and power.

32



Acknowledgements

I’m extremely grateful to Professor Hardin, my thesis and primary advisor,
who patiently guided me through the process of creating this paper every
week—you’ve always inspired me to keep asking questions and push beyond
my limits. I’d also like to give a big shoutout to Lauren Quesada (2022) for
all the work she had covered on permutation tests in her own undergraduate
thesis; it really helped us get the ball rolling before I even had my first draft
done. Special thanks to the rest of Mathematics and Statistics Department
at Pomona College for not only enriching my education for the last four
years but also fostering such a wonderful community of peers without whom I
wouldn’t have made it this far. Lastly, I’d like to extend my deepest gratitude
to my family for their endless love and support.



Bibliography

Anderson, M. J. and Legendre, P. (1999). An empirical comparison of
permutation methods for tests of partial regression coefficients in a linear
model. Journal of Statistical Computation and Simulation, 62(3):271–303.

Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. Chapman &
Hall.

Draper, N. R. and Stoneman, D. M. (1966). Testing for the inclusion of
variables in linear regression by a randomisation technique. Technometrics,
8(4):695–699.

Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans.
Society for Industrial and Applied Mathematics.

Efron, B. and Tibshirani, R. J. (1994). An Introduction to the Bootstrap.
Chapman & Hall.

Freedman, D. and Lane, D. (1983). A nonstochastic interpretation of reported
significance levels. Journal of Business & Economic Statistics, 1(4):292–298.

Kutner, M., Nachtsheim, C., Neter, J., and Li, W. (2005). Applied Linear
Statistical Models. McGraw-Hill, 5th edition.

Lehmann, E. L. and D’Abrera, H. J. M. (1975). Nonparametrics: Statistical
Methods Based on Ranks. Holden-Day, San Francisco.

Manly, B. F. J. (1986). Randomization and regression methods for testing
for associations with geographical, environmental and biological distances
between populations. Population Ecology, 28(2):201–218.

34



Manly, B. F. J. (1997). Randomization, bootstrap and Monte Carlo methods
in biology. Texts in Statistical Science Series. Chapman & Hall, London,
2nd edition.

ter Braak, C. J. F. (1990). Update notes: Canoco, version 3.10. Wageningen,
The Netherlands: Agricultural Mathematics Group, page 35.

ter Braak, C. J. F. (1992). Permutation Versus Bootstrap Significance Tests
in Multiple Regression and Anova. Austr. J. Statist., 29:79–85.

35


	Statistical Inference
	Simple Linear Regression
	Technical Conditions of SLR
	Permutation Tests for SLR Models

	Multiple Linear Regression
	Types of Multiple Regression
	Permutation Tests for MLR Models


	Permutation of the Response Variable
	Procedure
	Considerations of Manly's Method

	Permutation of the Predictor Variable
	Procedure
	Considerations of Draper and Stoneman's Method

	Permutation Of Residuals
	Permutation of Residuals Under the Reduced Model
	Procedure
	Considerations of Freedman and Lane's Method

	Permutation of Residuals Under the Full Model
	Procedure
	Considerations of ter Braak's Method


	Simulations
	Methodology
	Results
	Examination of Type I Error
	Examination of Power


	Discussion

