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Abstract

In this paper, error estimates of classification Random Forests are quantita-
tively assessed. Based on the initial theoretical framework built by Bates,
Hastie, and Tibshirani [1], the true error rate and expected error rate are
theoretically and empirically investigated in the context of a variety of er-
ror estimation methods common to Random Forests. We show that in the
classification case, Random Forests’ estimates of prediction error is closer on
average to the true error rate instead of the average prediction error. This is
opposite the findings of Bates, Hastie, and Tibshirani [1] which were given
for logistic regression. We further show that this result holds across different
error estimation strategies such as cross-validation, bootstrapping, and data
splitting.
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Chapter 1

Introduction

1.1 Literature Review

As evidenced by the 2017 State of Data Science and Machine Learning re-
port by Kaggle, almost half of data scientists use Random Forests at work
[2]. Random Forests [3] have become a popular classification tool in a variety
of fields, especially because of their excellent performance in very complex
data settings. The fact that out-of-bag (OOB) errors are theoretically and
computationally simple improvements over a train-test split, lead to their
ubiquity. When deploying a predictive model, it is important to understand
its prediction accuracy on future test points, so both good point estimates
and accurate confidence intervals for prediction error are essential. When
Random Forests are implemented, the OOB error is a widely-used approach
for point and interval estimate tasks, but in spite of OOB’s seeming sim-
plicity, its properties remain opaque. In the past, the OOB error has been
affirmed to be an unbiased estimate of the true error rate [4, 5]. Nonetheless,
it has been shown that for two-class classification problems the OOB error
can overestimate the true prediction error [6, 7]. It was later argued that the
use of stratified subsampling with sampling fractions that are proportional to
response class sizes of the training data yielded almost unbiased error rates
[8]. The present work is primarily concerned with OOB errors, but also ad-
dresses other common methods such as data splitting and cross validation,
as well as their combination with OOB errors.

Despite the apparent straightforwardness of data splitting, cross valida-
tion, and bootstrapping, the formal properties of these modeling techniques
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are subtle. The question of “what are we estimating?” rightfully reappears
often. For the linear model, fit by ordinary least squares, it was proven that
the most popular estimates of prediction error (including data splitting, boot-
strapping, cross-validation, etc.) are closer in expected value to the average
prediction error of models fit on other unseen training sets drawn from the
same population than the prediction error of the model at hand [1]. In other
words, although the error of the model fit on the training data may seem like
a reasonable estimand, it is not the closest error target. To our knowledge,
there are no studies investigating this result in the case of Random Forests,
as well as with various different model building workflows.

1.2 Goals of Paper

The main contribution of this thesis is two-fold: (i) the proximity of Random
Forests’ error estimates to the error targets presented by Bates et al. [1] is
compared to the proximity of logistic regression to its error targets, through
studies with different numbers of observations and predictors and (ii) the
performance of a variety of error estimation strategies is explored.

The paper is structured as follows: In Chapter 2, we review the statisti-
cal modeling workflow and its considerations. In Chapter 3, we build up the
random forest algorithm and the seemingly advantageous out-of-bag error.
In Chapter 4, we set up notation and introduce the error targets: true error
rate (ErrXY ) and expected true error (Err). Subsequently, Chapter 5, intro-
duces simulation-based studies. The descriptions include an outline of the
simulated data, the considered settings, and several model building work-
flows that will be investigated. In Chapter 6, we present the results of the
studies. The results are discussed in Chapter 7 alongside recommendations.
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Chapter 2

Modeling

2.1 Bias-Variance Trade-Off

When creating statistical models, one intention is to predict the outcome of
future data with low prediction error. Prediction errors can be decomposed
into two components: error due to bias and error due to variance. There
is a trade-off between a model’s ability to minimize bias and variance. Un-
derstanding these two types of error can help us diagnose model results and
avoid the mistake of over- or under-fitting the model to the observations. We
define the error of a model due to bias as the average difference between the
expected prediction of our model and the correct value which we are trying
to predict. The error due to variance is taken as the variability of a model
prediction for a given data point.

At its root, dealing with bias and variance is really about dealing with
over and under-fitting. Bias is reduced and variance is increased as model
complexity increases. Illustrated in Figure 2.1 [9], as additional parameters
are introduced into a model, the complexity of the model rises and variance
becomes our primary concern while bias steadily falls. The modeling process
can shed light on an optimal model complexity. In this work we do not
discuss the “double descent” curve that describes the improved performance
that can be achieved by increasing model complexity beyond the point of
interpolation. See Belkin et al. [10] for further discussion of this phenomenon
in a wide spectrum of models and data sets.
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Figure 2.1: Test and training error as a function of model complexity. [9]
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2.2 Finding the Optimal Model Complexity

The process of evaluating a model’s performance is known as model assess-
ment, whereas the process of selecting the proper level of flexibility for a
model is known as model selection. Given a data set, the use of a particu-
lar statistical learning method and an associated appropriate level of model
complexity is warranted if it results in a low test error. The test error can be
easily calculated if a designated test set is available. Unfortunately, splitting
the original data set into training and testing sets reduces power because the
model is trained on a smaller sample. In contrast, the training error can be
easily calculated by applying the statistical learning method to the observa-
tions used in its training. But as has been shown empirically, the training
error rate often is quite different from the test error rate, and in particular
the former can dramatically underestimate the latter [11].

Instead of creating a large designated test set to directly estimate the test
error rate, a number of techniques can be used to estimate the test error rate
using the available training data. The test estimate is then useful to tune
parameters and find a suitable level of model complexity as well as to measure
the performance of the fitted model on a new data set. Below the validation
set and cross validation approaches are discussed. Later, the out-of-bag error
is discussed as an alternative to test/train and cross validation.

2.2.1 The Validation Set

The first method to estimate the test error associated with fitting a particular
statistical learning method on a set of training observations is the validation
set approach. It involves randomly dividing the available set of observations
into two parts, a training set and a validation set. The model is fit on
the training set, and the fitted model is used to predict the responses for
the observations in the validation set. Hence, the validation set error rate
provides an independent estimate of the test error rate. This validation set
approach is simple and straightforward to implement, yet has the drawback
of using fewer observations to train the model. Therefore, the validation
set error rate tends to overestimate the test error rate for the model fit on
the entire data set [11]. Cross validation can be seen as a refinement of the
validation set approach that addresses the overestimation issue.
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2.2.2 v-fold Cross Validation

There are many cross validation methods, but the most ubiquitous is v-fold
cross validation, which has computational advantages over Leave-One-Out
cross validation (LOOCV). v-fold cross validation entails randomly dividing
the set of observations into v groups, or folds, of approximately equal size.
The first fold is treated as a validation set (or out-of-fold observations), and
the method is fit on the remaining v − 1 folds (or in-fold observations). The
error rate is then computed on the observations that are out-of-fold. This
procedure is repeated v times; each time, a different group of observations
is treated as a validation set. The process results in v estimates of the test
error, which are averaged to arrive at the estimate of the test error rate [11].
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Chapter 3

Trees and Random Forests

3.1 Building Random Forests

To understand Random Forests, we must first grasp the concept of a decision
tree. Decision trees are a supervised learning model where prediction is done
through recursive binary splitting based on an impurity metric. As implied
by their name, Random Forests are an ensemble of decision trees, introduced
by Breiman [3]. The power of Random Forests comes from the wisdom of
crowds. A large number of relatively uncorrelated models operating as a
committee will outperform any of the individual constituent models. While
some trees may be wrong, many other trees will be right. Hence, as a group
the trees are able to move in the correct direction. We will dive deeper into
the process of creating these uncorrelated models to better understand the
advantages of Random Forests.

To create many models, many “samples” are used. Tools such as boosting
and bagging can assist us in this process. Assume that we have collected
one sample on the population of interest. In order to create many models,
the bootstrapping method creates many re-samples, of the original random
sample, with replacement. Therefore, these bootstrapped samples represent
proxy samples from the population. Using bootstrapping, we can create
many samples, apply our statistical method to each one, and then average
their predictions to obtain a final result [12]. The result of aggregating over
multiple trees built on bagged re-samples are bagged decision trees.

Similar to bagged decision trees, Random Forests build numerous decision
trees on bootstrapped training samples. However, with the motivation of
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infusing extra variability and then averaging over that variability, Random
Forests include one additional step of variability. At each split in each tree
of a random forest, a random subset of predictor variables is considered at
every node in the tree. Each time a split in a decision tree is considered, a
random sample of m predictors are chosen as candidates from the set of p
predictors. This parameter, called mtry, is to be tuned. In other words, the
random forest algorithm does not consider all of the available predictors at
each split. In contrast, bagged decision trees consider all available predictor
variables at every node.

Suppose there are two very strong predictors along with noise predictors.
A collection of bagged trees will use the strong predictor at the top split
almost exclusively, creating similar trees, and thus highly correlated predic-
tions, even though they are built on different bootstrap samples. Random
Forests solve this problem by forcing each tree to be even more different, due
to the limited predictors considered at each node, and creating uncorrelated
trees.

Bagging and other resampling techniques can be used to reduce the vari-
ance in model predictions. In Random Forests, the bias of the full forest
is equivalent to the bias of a single decision tree (which itself has low bias
and high variance) [9]. However, by creating many trees and then averag-
ing them, the variance of the final forest can be greatly reduced over that
of a single tree. In practice, the only limitation on the size of the forest is
computing time as an infinite number of trees could be trained without ever
increasing bias and with a continual (if asymptotically declining) decrease in
the variance.

3.2 Out-of-Bag (OOB) Error

One of the advantages of the bagging algorithm of Random Forests is the
ability to avoid the need for cross-validation or a validation set to get an
unbiased estimate of the prediction error. Rather, it is estimated internally
when building the tree. The process is as follows:

1. Build many trees based on bootstrapped samples.

2. On average, and for large sample sizes, the bth tree does not use

lim
n→∞

(1− 1

n
)n =

1

e
≈ 1

3

8



of the observations. These observations are referred to as OOB obser-
vations for that tree.

3. Predict the response for the ith observation using the trees where that
observation was OOB.

4. Average the ≈ B
3
OOB predictions for the ith observation in regression

(or take a majority vote for classification) to obtain a single prediction
for the ith observation, where B is the number of trees used in the
random forest.

5. Let the OOB prediction for the ith observation be ŷ(−i). Therefore,

OOBerror =
1

n

n∑
i=1

1(yi ̸= ŷ(−i)) for classification

OOBerror =
1

n

n∑
i=1

(yi − ŷ(−i))
2 for regression

The convenience of having the OOB error measure comes in the form of
computing time. When fitting a random forest to a data set, the out-of-bag
error is calculated simultaneously. The advantage of using the OOB error,
while not producing biased error estimates, is investigated in this work.
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Chapter 4

Setting and Notation

Before turning to our main method in the next section, we introduce our no-
tation and review topics related to error targets. We consider the supervised
learning setting where we have p features X = (Xi,1, . . . , Xi,p) ∈ Rn×Rp and
response Y = (Y1, . . . , Yn) ∈ Rn. We assume that the data points (Xi, Yi) for
i = 1, . . . , n are independent and identically distributed from some under-
lying distribution P on Rn. We wish to understand the performance of our
fitted model when generalized to unseen data points, which can be formalized
by a loss function:

ℓ(ŷ, y) : Y × Y → R≥0

such that ℓ(y, y) = 0 for all y. The form of ℓ need not be specified and
could be squared error loss, misclassification error, cross-entropy, etc. Now
consider a model f(·) parameterized by θ. Let f̂(x, θ̂) be the function that
predicts y from x ∈ Rp using the model with parameters θ, which take
values in the space Θ. Let A be a model-fitting algorithm that takes any
number of data points and returns a parameter vector θ̂ ∈ Θ. Hence, θ̂ =
A(X, Y ) is the fitted value of the parameter based on the observed data
X and Y . Let (Xn+1, Yn+1) ∼ P be another independent test point from
the same distribution. Using the training data, we are interested in finding
the function f̂(x, θ) that minimizes the loss ℓ(f̂(Xn+1, θ), Yn+1). Note that
ℓ(f̂(Xn+1, θ), Yn+1) is a random and unknown object, and our target is one
of two quantities:

True Error Rate: ErrXY = E[ℓ(f̂(Xn+1, θ̂), Yn+1)|(X, Y )] (4.1)

Expected Error Rate: Err = E[ℓ(f̂(Xn+1, θ̂), Yn+1)] = E[ErrXY ] (4.2)
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These are the two most natural quantities of interest to the analyst.
Known as the true error rate, ErrXY is the expected test error of the model
that was fit on our actual training set. Err is the expected average error of
the fitting algorithm run on the same-sized data sets drawn from the under-
lying distribution P , and called the expected error rate. It is important to
note that the random variable Err is a constant with respect to (X, Y ), while
ErrXY is a function of (X, Y ) [1, 13].

In practice, we usually seek to grasp ErrXY , however, Err is sometimes
used as a quantity of interest. The former quantity is of the most interest
to a practitioner deploying a specific model, whereas the latter may be of
interest to a researcher comparing different fitting algorithms. To illustrate
this difference consider the following examples.

Suppose Statistician A is trying to estimate the average height of pen-
guins, found in the wild, based on a sample of 100 researched penguins.
Statistician A will use the original sample to build a model to estimate the
average height of the next sample of penguins. When presenting the model,
they will be interested in the true error rate (ErrXY ) of the model because
they will want to know how the specific model they built will perform on the
next data set.

However, if Statistician B is trying to accomplish the same task of esti-
mating the average height of penguins, based on a finite sample, but is unsure
of the structure of the model to utilize, they will be interested in a slightly
different error metric. Statistician B will run a variety of fitting algorithms to
build numerous models based on the sample available and will need to com-
pare the models. They will want to estimate the expected error rate (Err)
to know the average error of the fitting algorithm run on same-sized data
sets drawn from the underlying distribution. Statistician B is less interested
in the performance of the model which was built using the sample at hand
(which is Statistician A’s target), but rather the performance of the process
of arriving at the model.

While it may initially appear that the quantity ErrXY is easier to estimate,
since it concerns the model at hand, it has been observed that the cross-
validation estimate of error is farther from ErrXY than Err [14]. This issue,
as it is called, is mainly attributed to data re-usage.

Let (X∞, Y∞) represent a data set of unlimited size enabling the best
possible model f(·) to be chosen. Theoretically, ErrXY can be decomposed
into four parts [15]:
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Err = E[ℓ(f(X∞, θ), Y∞)] Best possible performance
(4.3)

+ E[ℓ(f̂(X∞, θ̂), Y∞)− ℓ(f(X∞, θ), Y∞)] Model selection cost
(4.4)

+ E[ℓ(f̂(Xn+1, θ̂), Yn+1)− ℓ(f̂(X∞, θ̂), Y∞)] Parameter estimation cost
(4.5)

+ E[ℓ(f̂(X, θ̂), Y )− ℓ(f̂(Xn+1, θ̂), Yn+1)] Data re-use cost (4.6)

The most interesting component is the final term (4.6), caused by data
re-usage, has a non-zero expectation when the same data points are used for
both model selection and parameter estimation. If one uses a validation set
approach, (4.6) will have an expectation of zero because each observation is
only used once. However, as estimated empirically, when using a full data
approach, this term (4.6) can be large and easily outweigh the advantages the
full data has in model selection and parameter estimation [15]. Thus, the full
data strategy will have lower model selection and parameter estimation costs
than the validation set strategy due to the higher number of observations
used to complete the model selection and parameter estimation processes.

The difference between the full data and validation set strategies in (4.4)
& (4.5) is bounded and well understood as an effect of sample size [15]. De-
spite suffering in model selection and parameter estimation costs, the valida-
tion set strategy will have a lower data re-use cost than the full data strategy,
and we know the data re-use cost term (4.6) could be very large. Therefore,
we would like to investigate the situations when the data re-use cost out-
weighs the model selection and parameter estimation costs. This comes in
the form of analyzing various model fitting approaches and when they pro-
vide more accurate estimates of error. Specifically the use of OOB errors
compared to validation set and cross validation strategies is investigated.
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Chapter 5

Methods

In this section, some simulation-based studies are described. Simulated data
are used to study the behavior of modeling strategies in simple settings, in
which all predictor variables are uncorrelated. The results provide insight
into the mechanisms which lead to different targets in error estimates.

5.1 Data Generation and Settings

The bias of error estimates in different data settings with numeric predictor
variables was systematically investigated by means of simulation studies in
balanced binary two-class response variable data. The settings considered
were:

• Different number of predictors, p ∈ {10, 100}.

• Different number of observations such that n < p, n > p, n ≫ p.

As done when modeling real data, several Random Forests with different
mtry values were constructed for each setting. The values for mtry ranged
from mtry = 1 all the way up to mtry = p. Note that for mtry = 1 there is
no selection of an optimal predictor variable for a split, while for mtry = p
the random forest method coincides with the bagging procedure which selects
the best predictor variable from the entire set of predictors.

The number of trees chosen is a trade-off between accuracy and com-
putational speed. More trees are necessary when using a large number of
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predictor variables. The OOB error stabilized at around 250 trees in conver-
gence studies [16], and they concluded that 1000 trees might be sufficiently
large for their genome-wide data set of more than 300,000 predictor variables.
Also in high-dimensional settings, Random Forests with 500 trees and 1000
trees yielded very similar OOB errors [17]. In accordance with these findings
the number of trees was set to 500 in all studies of this paper. Each setting
was repeated 1000 times to obtain stable results.

Only numeric predictor variables are considered in the studies. Both
predictors associated with the response and predictors not associated with the
response were considered, with all predictors still independently distributed.
The predictors not associated with the response followed a standard normal
distribution. The distribution of predictors with association was different for
each response class. The predictor values for observations from class 1 were
always drawn from a standard normal distribution. The predictor values
for observations from class 2 were drawn from a normal distribution with
variance 1 and a mean different from zero. Figure 5.1 gives an overview of the
distribution of predictors in the response classes. Let us consider the setting
with p = 10 as an example. The first two predictors X1 andX2 are associated
with the response, while the other predictors X3, . . . , X10 are noise. Hence,
X3, . . . , X10 follow a standard normal distribution, while the distributions
of X1 and X2 depend on the class to which the observations belong. If the
observation comes from class 1, the distribution of X1 and X2 is N(0, 1),
and X1 and X2 are distributed N(0.75, 1) for class 2. Randomly drawing the
mean separately for X1 and X2 and for each repetition of the study makes
sure that predictors with different effect strengths are considered.

It is important to note that the settings are simplistic because all pre-
dictors are uncorrelated. Although assuming no correlations between any of
the predictors is not realistic, such settings are important to understand the
mechanisms which lead to different targets in error estimation.

5.2 Strategies for Error Estimation

In simple terms, the modeling process consists of parameter estimation, fol-
lowed by error estimation. An important point of consideration when com-
pleting the two estimation steps is the choice of which subset of observations
will be used in each operation. Often, data for parameter estimation and
data for error estimation are collected at the same time, thus resulting in
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Number of Predictors Class 1 Class 2
Predictors N(µ1, 1) N(µ2, 1)
p = 10 X1 µ1 = 0 µ2 ∼ N(0.75, 1)

X2 µ1 = 0 µ2 ∼ N(0.75, 1)
X3, . . . , X10 µ1 = 0 µ2 = 0

p = 100 X1 µ1 = 0 µ2 ∼ N(0.75, 1)
...

...
...

X10 µ1 = 0 µ2 ∼ N(0.75, 1)
X11, . . . , X100 µ1 = 0 µ2 = 0

Figure 5.1: Distribution of predictors in class 1 and class 2 of the simulated
data set up as in Janitza and Hornung [8].

a single sample that needs to be apportioned to both parameter and error
estimation. As described in Figure 2.1, finding the optimal model complexity
requires an external test set. In an ideal world, to avoid “data snooping”,
one needs one data set for model building, one for parameter estimation,
and then after a model is accepted, another data set for error estimation.
However, this is not always possible because of constraints, so one may need
to do the best one can with the data available. Hence, when modeling it is
important to outline the strategy that will be used to construct the model
and then estimate its error.

Various strategies were chosen to separately target the parameter esti-
mation and error estimation steps in the modeling process, and thus each
strategy consists of two parts. The following strategies were considered:

• Logistic Regression CV Error (LGCV): The logistic model is built on
the in-fold data set and the error of the model is estimated via 4-fold
cross-validation.

• Full Data Set CV Error (FDCV): Parameters are set prior to model
building with mtry =

√
p. The random forest is built on the in-

fold data set and the error of the model is estimated via 4-fold cross-
validation.

• Full Data Set OOB Error (FDO): Parameter and error estimation is
done on the same data set. mtry is chosen by using the OOB error rate.
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Hence, the random forest with the lowest OOB error rate is chosen and
the OOB error is returned as the error estimate.

• Split Data Set OOB Error (SDO): The sample is divided into training
and testing sets. Parameter estimation is done on the training set.
The model is chosen by using the OOB error rate on the training set.
The error of the random forest, built on the entire training set, is then
estimated by predicting on the testing set with an accuracy measure
as the error estimate.

• Split Data Set CV Error (SDCV): The sample is divided into training
and testing sets. Parameter estimation is done on the training set,
using 4-fold cross-validated error estimates to select mtry. The error
of the random forest, built on the entire training set, is estimated by
predicting on the testing set with an accuracy measure as the error
estimate.

• Split Data Set Test Error (SDT): The sample is divided into training,
validation, and testing sets. Parameter estimation is done on the train-
ing and validation sets. The Random Forests are fit on the training set,
and the fitted forests are used to predict the responses for the obser-
vations in the validation set. The model with the highest accuracy is
chosen. The error of this random forest, built solely on the training set,
is estimated by predicting on the testing set and obtaining an accuracy
measure, and thus uses observations that are not part of the set of
observations that are considered for constructing the Random Forest.

The workflow for the Split Data Set Test Error (SDT) is illustrated in
Figure 5.3.

5.3 Empirical Estimation of ErrXY and Err

The estimation of the theoretical quantities, ErrXY and Err, deepens the
understanding of the difference between the two. As mentioned above, the
true error rate, ErrXY , is the test error of the model that was fit on our actual
training set. Hence, the estimation of this quantity is the error produced by
the model on a new theoretically infinitely large test set. As illustrated in
Figure 5.4, the sample is used to create the model, and then this model is
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Strategy Model Fitting Parameter Estimation Error Estimation
LGCV In-Fold observations N/A Out-of-Fold observations

from full data set from full data set
FDCV In-Fold observations N/A Out-of-Fold observations

from full data set from full data set
FDO In-Bag observations OOB observations OOB observations

from full data set from full data set from full data set
SDO In-Bag observations OOB observations Test data set

from training data set from training data set
SDCV In-Fold observations Out-Fold observations Test data set

from training data set from training data set
SDT Training data set Validation data set Test data set

Figure 5.2: Data used in each step of the error estimation strategies

used to predict on a large test set, from the underlying population. The
missclassification rate on the test set will be the true error rate.

Moreover, Err is the average error of the fitting algorithm run on the
same-sized data sets drawn from the underlying distribution P , and called
the expected error rate. When calculating the expected error rate, the average
of the true error rate, but using a new model every time, is taken. As seen in
Figure 5.4, the entire model fitting process is repeated to obtain each ErrXY

from one sample.
In other words, the difference between the estimation of ErrXY and Err is

that the former uses one model, while the latter averages over many models.
As seen from Equation 4.1, ErrXY is conditional on the data, while Err
is unconditional. Note that Err averages over everything that is random,
including the randomness in the training set that produced the model.
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Training Data Set

Fit ModelsFit ModelsFit ModelsFit Models
Validation Data Set

Tuned Model

Test Data Set

Error Estimate

Model Fitting

Parameter
Estimation
(accuracy)

Prediction

Error Estimation

Figure 5.3: Workflow for SDT strategy
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Figure 5.4: Empirical estimation of ErrXY and Err.
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Chapter 6

Results

6.1 Distance to Target Errors

Recall, when creating statistical models, one wants estimates of error that
are close to the truth and low. But that begs the question: close to what
truth, ErrXY or Err? In an effort to compare the results of our simulations
to those of Bates, Hastie, and Tibshirani [1], Figure 6.1 shows the distance of

Êrr
(LGCV)

from Err compared to its distance from ErrXY . Similar to Bates,
Hastie, and Tibshirani, we can see that in the logistic regression model,

|Êrr
(LGCV)

− ErrXY | > |Êrr
(LGCV)

− Err|

The difference is more pronounced with n < p and lessens as n → ∞. Re-

gardless, repeated simulations consistently show that Êrr
(LGCV)

is on average
closer to Err than ErrXY .

In Figure 6.2 we see that this relationship has flipped for Random Forests.

Êrr
(FDCV)

is closer to ErrXY than Err. As a reminder, the difference between

Êrr
(LGCV)

and Êrr
(FDCV)

is that the former is an error estimate for a logistic
model while the latter a random forest. Both are cross-validated estimates on
the in-fold data set with no parameter tuning. Thus, the relationship high-
lighted by Bates, Hastie, and Tibshirani [1] seems to be specific to generalized
linear models as they investigated linear and logistic regression models.

The flip in relationship may be attributed to the difference in the way each
model utilizes the data. In logistic regression, the coefficients are estimated
via maximum likelihood estimation, thus possibly leading to over-fitting and
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Figure 6.1: Simulation results comparing the error of cross-validated esti-
mates of a logistic regression model when estimating Err to its error when

estimating ErrXY : the mean absolute deviation between Êrr
(LGCV)

and Err
or ErrXY . The dark grey vertical line in each panel is where n = p. Notice

that across all n, Êrr
(LGCV)

is closer to Err than ErrXY .

biased estimates of error. On the other hand, Random Forests are infused
with extra variability through resampling methods (as mentioned in Chapter
3), and therefore the model is built on different observations and different
variables at each step. As a result, the logistic regression model may be less
informative on the “next” sample, than a random forest. Hence, Êrr is closer
to ErrXY than Err for Random Forests because its resampling methods build
the model on data more akin to wild data.

We further explore the difference between Êrr for logistic regression and
Random Forests in an experiment with n = 50 observations and p = 10
features; see Figure 6.3. In the right plot, there seems to exist a pairing

between Êrr
(FDCV)

and ErrXY , where high estimates of Êrr
(FDCV)

are paired
with high estimates of ErrXY and vice-versa (i.e. very few of the linking
lines cross). In a logistic regression model, there does not seem to exist this
pairing as seen in the left plot (i.e. most of the linking lines cross). In other

words, Êrr
(LGCV)

tends to be closer to Err than ErrXY , and Êrr
FDCV

tends
to be closer to ErrXY than to Err.

Returning to the remaining strategies that all use Random Forests, Fig-
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Figure 6.2: Simulation results comparing the error of CV estimates of a
random forest model when estimating Err to its error when estimating ErrXY :

the mean absolute deviation between Êrr
(FDCV)

and Err or ErrXY . The dark
grey vertical line in each panel is where n = p. Notice that across all n,

Êrr
(FDCV)

is closer to ErrXY than Err.

ures 6.4 - 6.7 show that across the error estimation strategies, Êrr is closer to
ErrXY than Err. Despite this relationship, the differences in mean absolute
deviations, from ErrXY and Err, tend to be quite small.
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Figure 6.3: Random sample of 20 iterations of Êrr linked with the corre-
sponding ErrXY for logistic regression (left plot) as compared to Random
Forests (right plot). Solid black horizontal line is Err.

6.2 Distance Across Error Estimation Strate-

gies

Section 6.1 detailed our investigation of the distance of the estimates of error
to ErrXY and Err. We showed that in Random Forests, the error estimates
are closer to ErrXY than to Err. Here we assess a follow-up question: how
close is Êrr to ErrXY ? Figure 6.8 compares the strategies according to the
expected value of |Êrr− ErrXY |.

In the case of p = 10 features, the strategies that utilize the in-fold data
set to train the model (LGCV, FDCV, and FDO) seem to outperform the
split data approaches. The models seem to not over-fit and therefore the error
estimates do suffer a drop in performance as a result of train/test splits. It is
important to mention that FDO is the only strategy of the three that tunes
parameters. Moreover, FDO seems to act poorly when n is small.

In the case of p = 100 features, FDCV seems to be the best candidate
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Figure 6.4: Simulation results comparing the error of OOB estimates of a
random forest model when estimating Err to its error when estimating ErrXY :

the mean absolute deviation between Êrr
(FDO)

and Err or ErrXY . The dark
grey vertical line in each panel is where n = p.

Figure 6.5: Simulation results comparing the error of OOB estimates of a
random forest model when estimating Err to its error when estimating ErrXY :

the mean absolute deviation between Êrr
(SDO)

and Err or ErrXY . The dark
grey vertical line in each panel is where n = p.
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Figure 6.6: Simulation results comparing the error of CV estimates of a
random forest model when estimating Err to its error when estimating ErrXY :

the mean absolute deviation between Êrr
(SDCV)

and Err or ErrXY . The dark
grey vertical line in each panel is where n = p.

Figure 6.7: Simulation results comparing the error of validation set estimates
of a random forest model when estimating Err to its error when estimating

ErrXY : the mean absolute deviation between Êrr
(SDT)

and Err or ErrXY .
The dark grey vertical line in each panel is where n = p.
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when n < p as well as n > p. As was the case when p = 10 features, FDO
performs weakly with small n, but is akin to FDCV when n = p. In contrast
to p = 10 features, FDCV and FDO perform better than LGCV when n > p.
Once again, it is important to note that, out of the strategies that build the
model on the entire data set, FDO tunes the model’s parameters, compared
to FDCV which does not.

Figure 6.8: Mean absolute deviation between Êrr and ErrXY across error
estimation strategies. The dark grey vertical line in each panel is where
n = p.
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Chapter 7

Discussion

This investigation had two main components. First, we discussed the dif-
ference in error targets presented by Bates et al. [1]. In their work, they
found that in the special case of the generalized linear model using unregu-
larized OLS for model-fitting, common estimates of prediction error — cross-
validation, bootstrap, data splitting, and covariance penalties — should be
viewed as estimates of the average prediction error, averaged across other
hypothetical data sets from the same distribution. My primary result is that
in the classification case, Random Forests’ estimates of prediction error can
be taken as an estimate of the true error rate instead of as an estimate of
the average prediction error. In my simulations this result held across er-
ror estimation strategies such as cross-validation, bootstrapping, and data
splitting (See Figures 6.2 - 6.7). The result was present regardless of n, p.
Nonetheless, we wish to be clear that the estimates of prediction error were
a good approximation of both the true error rate and expected error rate in
the data splitting cases.

A fundamental open question is to understand the size of the gap of
estimates of prediction error with the true error rate and expected error rate.
The present work focused on which target the estimate is closer to. Moreover,
it is necessary to understand under what conditions the gap is large, making it
necessary to modify the method of error estimation depending on the target.
Roughly speaking, we expect the gap to be small when n/p is large. In my
experiments, the gap was always smaller than 1%. As n increases, however,
the difference decreases. Other future directions are the investigation of this
relationship in correlated data and imbalanced data.

Second, we discussed the performance of a variety of error estimation
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strategies. The models built on the entire sample were closer to the true
error rate compared to those built on a training set and error estimates
obtained from a testing set. Therefore, the data strategies that do not use
a holdout set seem more appealing choice for model building, regardless if
parameter tuning is to be performed or not. Empirically, the strategies that
use resampling techniques as opposed to a holdout set are favorable.
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