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Abstract

Mining rare variant signals from the cancer genome is relevant to a variety
of clinical problems like classifying cancers of unknown primary site. So-
matic variant mutation analysis has traditionally been restricted to cancer-
associated genes with frequent occurrences, neglecting potential signals en-
coded in the vast “hidden genome” of rare and hitherto unseen mutations.
Indeed, future tumor samples are bound to generate hitherto unseen muta-
tions which may contain clinically-relevant signals. Smoothed Good-Turing
frequency estimation is an intriguing statistical method that uses mutation
richness to estimate probabilities of encountering hitherto unseen mutations.
While previous research illustrated the potential of this method, analysis was
restricted to the level of frequently mutated genes, omitting from considera-
tion any signal in more sparsely mutated genes (which encompass the prepon-
derance of the cancer exome). To include a wider cross-section of the cancer
exome, this thesis explores the possibility of using de-sparsification strate-
gies to aggregate mutation data in thoughtfully-constructed gene groups,
for which Good-Turing probabilities can be calculated reliably. This thesis
presents two de-sparsification strategies: 1) a higher-variance method that
learns gene groupings directly from somatic mutation probability patterns
and 2) a higher-bias method that aggregates mutation data within known
biological pathways. Generating gene groups that contain cancer type spe-
cific hitherto unseen mutation probabilities may improve the ability to har-
ness the “hidden genome” of unseen somatic mutation for important clinical
tasks.
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Chapter 1

Cancer: A Mutational Malady

Mutation is the unifying hallmark of cancer etiology, though mutation is
a remarkably heterogeneous process that varies between cancer types and
between patients. Moreover, the vast majority of somatic variant muta-
tions (the most abundant mutations in human cancer) are extremely rare in
databases of sequenced cancer genomes. This chapter provides an overview
of cancer genetics, defines relevant terminology, and lays out the overarching,
biomedically-oriented goal of this thesis: extracting clinically relevant signals
from the abundance of rare mutation in the cancer genome.

1.1 A brief overview of cancer genetics

Human cancer is a tremendous burden on public health on a global scale.
Even with the advent of modern medicine and improved health care, can-
cer has proven an especially difficult malady to treat. Indeed, cancer is the
second leading cause of death worldwide (Hassanpour & Mohammadamin
2017). The difficulty of diagnosing and treating cancer lies in its many dif-
ferent causes and forms. Cancer is an umbrella term referring to more than
277 different kinds of disease (Hassanpour & Mohammadamin 2017) and is
the result of a confluence of environmental and genetic factors (Lodish et al.
2003). However, the underlying cause of cancer is an accumulation of inher-
ited or acquired alterations to an individual’s DNA. For the purposes of this
thesis, I will focus on the acquired molecular alterations that cause cancer,
rather than the epidemiological or behavioral factors that increase disease
risk.
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Cancer is a loss of cellular regulation caused by an accumula-
tion of mutations to DNA. Cancer development is based on two processes.
First, the continuous, more-or-less random acquisition of mutation in indi-
vidual cells throughout their lifetimes. Second, natural selection acting on
the phenotype conferred by those mutations (Stratton et al. 2009). In most
cases, random mutations are either neutral, meaning they have no impact
on an individual’s fitness, or deleterious, which disposes mutated cells to
negative selection. However, in some cases, mutation can confer a growth
advantage to cells, which allows them to proliferate uncontrollably, spread to
other tissues, and cause disease.

There are two main classes of mutations in human cancer. Non-heritable
mutations that are obtained through a cell’s lifetime are termed somatic
mutations. Somatic mutations comprise the majority of cancer causing ge-
netic alterations. Germline, or heritable, mutations are passed down through
family pedigrees (Stratton et al. 2009). There are many different kinds of
somatic alterations, ranging from relatively simple single nucleotide DNA
changes to exotic rearrangements of large DNA regions. The catalogue of so-
matic mutation is a rich resource to understand the etiology and mutational
processes acting in human cancers (Stratton et al. 2009). For the purposes of
this thesis, I will primarily focus on the most common mutation type: single
nucleotide somatic alterations, or somatic variant mutations that occur
in the protein-coding, or exonic regions of the genome. 1

Each mutation in cancer may be classified based on its impact vis-à-
vis oncogenesis (cancer development). Mutations can either be classified as
drivers or passengers. Drivers, or causal mutations, confer a growth advan-
tage that allows cancer cells to proliferate unchecked. Passenger mutations
are biologically inert and do not contribute to tumor development (Stratton
et al. 2009). It is important to note that a single mutation is rarely ever
sufficient to induce oncogenesis alone. Most scientists agree on a “multi-
hit” hypothesis, where carcinogenesis is caused by a sequence of mutations
that create a rapidly proliferating cell type that evades normal checks on cell
growth. This creates a positive feedback cycle, where unchecked cell growth
decreases genomic stability and permits further mutation (Lodish et al. 2003).
Indeed, as tumors develop, cancer cells acquire mutations that differentiate

1With the advent of whole genome sequencing, non-coding mutations are increasingly
becoming interesting to researchers. However, I focus on somatic variants in cancer exomes,
due to more available data and greater functional enrichment of mutations in exons.
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them from their progenitors, leading to differences in treatment responses
within cells of the same tumor (Croce 2008). Additionally, the“multi-hit”
hypothesis explains why most cancers develop later in life, as a perfect storm
of mutations steadily acquired through life are required to initiate cancer
development (Lodish et al. 2003).

How do mutations to DNA give rise to a cancerous phenotype? Altering
the DNA sequence of genes can lead to aberrant proteins which disregu-
late important pathways involving cell proliferation and survival. There are
six main phenotypic hallmarks of cancer: 1) loss of contact inhibition, 2)
exaggerated response to growth regulating signals, 3) failure to undergo pro-
grammed cell death in response to genetic damage, 4) immortalization 5)
ability to evade immune defenses and 6) the production of factors promoting
increased vascularization of the tumor (angiogenesis) (Hanahan & Weinberg
2000).

Genes involved in cancer induction can be classified into two major cat-
egories, proto-oncogenes and tumor suppressor genes. Both proto-oncogenes
and tumor suppressor gene classes are involved in the maintenance of the
cell cycle, or the endogenous system that controls cell division. Mutations
to proto-oncogenes are typically dominant, gain of function mutations; that
is, mutation to only one genomic copy of the gene is sufficient to induce
cancer (Lodish et al. 2003). When a proto-oncogene is mutated, it becomes
“activated” to an oncogene which can contribute to carcinogenesis. Tumor
suppressor genes are a broad class of genes that encode cell cycle inhibitors,
receptor proteins for inhibitory hormones, checkpoint proteins that halt the
cell cycle upon DNA damage, and proteins that promote apoptosis (Lodish
et al. 2003). Under normal function, tumor suppressor genes act to restrain
cell division. Mutation to these genes permits inappropriate growth. Muta-
tions in tumor suppressors are typically recessive, loss of function mutations,
meaning that mutations (hits) to both gene copies are required to inactivate
tumor suppressor genes (Lodish et al. 2003). An important subclass of tumor
suppressor genes are DNA repair genes, which are responsible for ensuring
genomic stability. In short, DNA repair genes fix DNA damaged by copying
errors or mutagens, preventing the accumulation of potentially deleterious or
cancerous mutations.

A useful analogy for carcinogenesis is the progressive breakdown of a car.
In a normal human cell (much like a functioning car), there are multiple
layers of control to ensure the cell operates predictably. Proto-oncogenes,
like the gas pedal of the cell, provide the go signals for cell division. Tumor
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suppressor genes, like the breaks, halt cell growth until appropriate conditions
for division are met. DNA repair genes, like your mechanic, ensure that the
cellular machinery are functioning properly. All of these components work in
concert to tightly control the cell’s passage through the cell cycle. But over
time, an accumulation of inherited and acquired defects (like manufacturing
errors and wear and tear on a car) can cause the internal checks on cell
growth to fail. This can causes the cell to divide uncontrollably resulting in
tumor growth.

1.2 Mutational heterogeneity in cancer

Figure 1.1: Figure from Lawrence et al. (2013). Main panel: frequency
of mutation (# mutations/megabase) illustrates remarkable heterogeneity
in mutation rates between and within cancer types. Minor panel: relative
proportion of base substitution signatures within and between cancer types.

While mutation is the unifying molecular cause of cancer, it is not a
monolithic process. The types and frequencies of mutation vary dramatically
across the genome and across different cancer types2. Some mutations are

2Cancer types are defined according to tissue of origin and cell type (histology).
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highly specific to particular cancer types, while others are present in many
cancers. For example, the gene TP53 is found mutated at high frequencies in
many cancers, while the BRCA1 gene is highly specific to breast and ovarian
cancers (Schaefer & Serrano 2016).

In a study by Lawrence et al. (2013), the exomes (protein coding regions
of the genome) of 3083 tumor samples spanning 27 different cancer types were
sequenced. The authors assessed mutational heterogeneity on several differ-
ent levels: mutation frequencies between tumors of the same cancer type,
mutation frequencies between tumors of different cancer types, mutation sig-
natures between tumors of different cancer types, and mutation frequencies
between different locations of the genome.

Analysis of the 27 cancer types revealed that median mutation frequencies
varied up to 1000-fold between cancer types as seen in the main panel of
Figure 1.1. About half the variation in mutation frequency was explainable
by cancer type. The study also found marked variation in mutation frequency
between tumors of the same cancer types, also visible on the main panel of
Figure 1.1. For example, the cancers with the highest mutation frequencies
are lung cancers and melanomas, due to the potency of the carcinogens at
work (cigarette smoke and UV radiation respectively) (Vogelstein et al. 2013).
The results of Lawrence et al. (2013) demonstrate the remarkable variability
in mutation frequency between different types of cancer and between different
patients.

More complex mutational phenomena also show tissue specific patterns.
The frequency of catastrophic “hypermutation” events are known to occur
with varying frequencies in different cancer types. Complex mutation rela-
tionships such as co-mutation or mutual exclusivity are also known to be
remarkably specific to certain cancer types (Schneider et al. 2018). Studies
of somatic mutation have illustrated remarkable heterogeneity in mutational
phenomena, which can be largely explained by differences in tissue type and
background mutation rate.

Different cancer types also show marked variability in mutation spectra,
or relative contributions of each single base substitution signature in the can-
cer genome. The minor panel of Figure 1.1 shows the relative proportions
of the 6 possible single nucleotide base substitution signatures. A remark-
able example is the last three panels, which show the mutation signature
contributions in Lung adenocarcinoma, Lung squamous cell carcinoma, and
Melanoma. In the two lung cancers, the majority of mutations are C→A
changes, as indicated by the large blue shaded area. These mutations are
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Figure 1.2: Mutation spectra in different cancer types reveals rich variation
among different cancer types and natural grouping among cancers of the same
types. Distance from the center represents the total mutation frequency (in
mutations/Mb) while the angle indicates the relative contributions of each
spectra (Lawrence et al. 2013).
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consistent with exposure to the hydrocarbons found in cigarette smoke. In
contrast, the melanomas were composed of an overwhelming number of C→T
mutations, consistent with exposure to excess UV radiation.

The heterogeneity in mutation signatures between cancer types is further
illustrated in the radial plot in Figure 1.2. A dimension reduction algorithm
(non-negative matrix factorization) was used to summarize each tumor sam-
ple according to the relative contributions of each of the 96 single nucleotide
mutations signatures3. Plotting tumors according to their mutation frequen-
cies and the relative contributions of the mutation spectra identified by the
algorithm illustrates a grouping of tumors according to their cancer type.
Figure 1.2 illustrates a link between relative contributions of different muta-
tion types and cancer type.

Lastly, the study by Lawrence et al. (2013) identified that mutation fre-
quency varied regionally across the genome, with differences in mutation
frequency varying between 5-fold and 10-fold at different positions along the
genome. The authors contended that a failure to account for mutational
heterogeneity (and therefore background mutation rates) was a major hin-
drance to identifying mutations that were statistically significant from the
background rate (and therefore relevant to cancer). In short, mutation is
not a monolithic process in human cancer. Mutation varies between cancer
patients, cancer types, and within the genome itself.

1.3 Harnessing rare mutations: a clinically-

relevant endeavor

In addition to improving understanding of cancer etiology, biomolecular study
of cancer genomes can help inform diagnosis and patient treatment. The idea
underlying the field of precision oncology is that molecular characterization
of a patient’s tumor can help predict an individual patient’s response to
specific treatments. These genotype-directed therapies have led to dramatic
improvements in patient outcomes, providing a positive sign for the future
of personalized cancer medicine (Scholl & Fro 2019).

Comprehensive sequencing efforts to uncover the mutational drivers of

3There are 96 single base substitution signatures, because there are 6 single nucleotide
mutation types (as shown in the minor panel of 1.1), 4 possible bases (A,C,T,G) to flank
the mutated locus on the 5’ end, and 4 possible bases to flank the locus on the 3’ end.
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human cancer are complicated by a “long-tail” phenomenon, where sparsely
mutated genes vastly outnumber commonly mutated ones (Vogelstein et al.
2013). Sequencing efforts have documented a small number of “mountains”
and a large number of “hills”, i.e., a small number genes that acquire a
large number of mutations, and a large number of genes that are mutated
infrequently (Vogelstein et al. 2013). Mutational “mountains”, such as genes
like TP53 and KRAS, have been studied intensively, are extremely likely to
drive carcinogenesis, and in some cases have associated treatments designed
to target the particular gene or gene product. However, the challenge lies in
the many “hills”. Sparsely mutated genes dominate the landscape of muta-
tion in cancer, and several likely play important roles in cancer development.
A good example is the rare gene fusions in the NTRK family of receptor
kinases, which allow cancers to evade normal checks on cell growth (Scholl
& Fro 2019). This implies that many clinically-relevant yet rare mutations
remain undiscovered. Thus, the statistical task of distinguishing sparsely mu-
tated cancer genes from the background mutational noise is both extremely
important and difficult.

Several different approaches have been used to identify and illustrate the
clinical-relevance of rare mutations. One large scale analysis of nearly 25,000
cancers identified over 1000 mutational hotspots, of which 26% were novel
(Chang et al. 2018). This brute force approach demonstrated the importance
of large genome sequencing efforts sufficiently powered to identify rare driver
variants. A clever statistical approach to identifying rare cancer drivers in-
volves identifying mutational signals among proximal groups of “hills”. For
example, the HotNet2 model (Leiserson et al. 2015) assembles genes into
small interacting networks and identifies rare drivers by identifying subnet-
works with substantially higher-than-expected mutation scores. HotNet2
groups individual “mountains” into mountain ranges and their associated
“foothills”, enabling more powerful identification of rare driver genes.

1.4 Cancers of unknown primary site, clonal

origin of metastasis, and liquid biopsy

Study of mutational heterogeneity of different cancer types (especially rare
mutations) is relevant to clinical problems like diagnosing cancers of unknown
primary site, identifying the clonal origin of a metastatic cancer, and in
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emerging liquid biopsy technologies.

1.4.1 Cancers of unknown primary

Cancers of unknown primary site (CUPs) comprise 3-5% of cancer diagnoses
globally and are typically associated with poor health outcomes (Pavlidis &
Khaled 2015). Cancers of unknown primary site are often metastatic cancers
for which the anatomical site of origin is unknown after detailed investiga-
tion. Once thought to be their own class of cancers, it is now recognized
that CUPs are a heterogeneous class of tumors, each retaining a genomic
signature of their tissue of origin. The advent of improved imaging tech-
niques, immunohistochemical testing, and genomic and proteomic sequenc-
ing tools have sophisticated our approach to diagnosing and treating these
cancers. Thus, cancers of unknown primary are a prime target for person-
alized medicine, as treatment can be informed by the molecular profile of
individual patients (Varadhachary & Raber 2014).

1.4.2 Clonal origin of metastasis

A major challenge for pathologists is determining whether a tumor is a
metastatic tumor or independent occurrence. This task is typically done by
comparing the histological characteristics of tumor cells, but genetic mark-
ers have become relevant to this decision. The idea is that two tumors that
metastatically evolved from the same progenitor will have some somatic mu-
tations in common, while unrelated tumors will display different mutation
profiles. However, the significance of shared mutation depends precisely on
how common the observed mutations are. Thus, using genomic data, par-
ticularly rare variant data, to test for clonal relatedness is a important task
(Ostrovnaya et al. 2015).

1.4.3 Liquid biopsy

Liquid biopsy is the analysis of cell-free, circulating tumor DNA obtained
through a minimally invasive procedure such as a blood draw or urine sam-
ple (Wan et al. 2017). Liquid biopsies could be clinically beneficial in a vari-
ety of settings: early or population-wide cancer detection screens, prognosis
assessment, treatment selection, and treatment monitoring. Liquid biopsy
approaches are still an emerging technology, and identifying better ways to
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match mutational information in circulating tumor DNA fragments to spe-
cific cancer diagnoses will render these tests more efficacious and more widely
used.

1.5 Summary

The biomedical goal of this thesis is to improve extraction of cancer type
specific signals from large-scale sequencing data (particularly from sparsely
mutated genes) in the cancer genome. These signals could potentially be
relevant to the clinical tasks outlined in the previous section. The major
statistical challenge, of which the remainder of my thesis will attempt to
address, involves harnessing the signal encoded in the preponderance of rare
mutation in the cancer genome.
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Chapter 2

Unseen variant probability
estimation

How do you estimate the probability of a hitherto unseen event? This chapter
details a statistical approach to this problem, initially developed in the field
of computational linguistics. Then I detail the work of Chakraborty, Arora,
Begg & Shen (2019b), who apply this method to mutations in the cancer
genome, generating clinically-relevant results.

2.1 Smoothed Good-Turing Frequency Esti-

mation

In linguistics, there are essentially infinitely many words and word combina-
tions. To that end, a finite sample of language data will fail to capture the
multitudinous linguistic possibilities, and future samples are bound to en-
counter new or previously-unseen units. Important tasks in computational
linguistics such as spelling correction, sense disambiguation, and machine
translation can be improved by precisely estimating the probability of hith-
erto unseen units by assigning them a nonzero probability (Gale 1995).

Table 2.1 shows a common pattern in linguistic data. The table contains
summary statistics from the abstract of this thesis. r, the frequency, denotes
how frequently a word appears in my abstract. For example, a word that
occurs with r = 1 appears once in my abstract, a word that occurs with
r = 2 appears twice, and so on. Nr, the frequency of frequencies, counts how
many words occur at a particular frequency, r. For example, N1 denotes the
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frequency frequency
of

frequencies
r Nr

1 100
2 25
3 9
4 4
5 2
6 0
7 1
8 1
9 0
10 2

Table 2.1: A table illustrating the word frequencies of words in the abstract
of this thesis. The right skew in distribution of Nr illustrates that linguistic
data is dominated by rare terms (occur with frequency r = 1).

number of words that occur only once in my abstract (there are 100 of these),
N2 denotes the number of objects that occur twice (25 of these), and so on.
Words included in the N1 category represent infrequent or rare words like
“restricted”, while words in N10 might include common words like “the”. The
distribution of Nr values shows a substantial right skew, where the majority
of words occur at low frequencies (r = 1, 2), and as r increases, Nr decays
and becomes more unstable/noisy. In short, linguistic data is dominated by
the rare terms, and grows noisier as r gets larger.

What is absent from Table 2.1 is the row corresponding to r = 0, N0.
This row corresponds to the number of unseen objects. Maximum likelihood
estimation (which produces probability estimates that maximize the likeli-
hood of the observed data) would predict the the probability of a word that
occurs with frequency r to be r

N
where N =

∑
rNr. Since r = 0 in the case

of unseen objects, maximum likelihood would assign every unseen object a 0
probability.

However, assigning unseen objects 0 probability is often undesirable. For
instance, consider the abstract of this thesis as a sample of linguistic data.

12



The main body of this thesis has produced new words that were not present
in my abstract; in short, the occurrence of new words does not happen with
0 probability. In applied scenarios that require realistic modeling of hu-
man language, such as sense disambiguation. machine translation, and text
prediction, assigning 0 probability to unseen words can lead to poor per-
formance. In short, maximum likelihood approaches fail to account for the
large number of unseen objects in linguistic-type data, motivating the need
for probability estimation methods that account for the units unseen in a
finite sample.

Good-Turing estimation is a popular strategy for dealing with the unseen
unit estimation problem. Good-Turing estimation relies on the idea that the
number of objects that occur with rate (r + 1) is typically smaller than the
number of objects that occur with rate r. We saw this behavior in Table 2.1:
as r increases, the Nr value decays. Qualitatively, the Good-Turing method
takes a portion of the probability occupied by objects that occur with rate
r + 1 and divides the probability evenly among the objects that occur with
rate r. The probability occupied by all objects i ∈ {1, . . . , Nr} that occur
with rate r is estimated by:

Nr∑
i=1

PGT (r) =
(r + 1)Nr+1

N
(2.1)

To obtain the probability of an individual object that occurs r times, we
need to spread the above probability evenly among the Nr objects:

PGT (r) =
(r + 1)Nr+1

N ·Nr

(2.2)

This is the Good-Turing estimator for the probability of encountering an
object that appears r times!

2.1.1 Where does smoothing come in?

The Good-Turing estimator works well when r is small, but fails when op-
erating in the noisy tail of the frequency distribution (see larger rows of r in
Table 2.1). For example, suppose using the data from the thesis abstract, we
want to estimate the probability of encountering a word occurring 5 times
(r = 5) in Chapter 2. The Good-Turing formula would assign the probability
like so:

13



PGT (r = 5) =
(r + 1)Nr+1

N ·Nr

=
(5 + 1)

N
· N6

N5

=
(6)

N
· 0

2
= 0 (2.3)

The problem is that Nr values become unreliable for large values of r.
In a finite (often limited) sample of linguistic data, there will exist gaps
in our distribution of Nr, which need to be filled in to obtain an accurate
representation of the true word frequency distribution.

Smoothing can help alleviate the effect of noise on Nr. Gale (1995) pro-
vided a simple smoothing of the Nr values that also performed best in a se-
ries of Monte Carlo simulations. In fact, the ease of their smoothing method
has increased the popularity of applying Good-Turing methods in practice.
Intuitively, Gale’s method smooths the Nr distribution asymmetrically, pre-
serving probabilities for the better-estimated regions of the Nr distribution
(for example, when r is small) and adjusting the probabilities for sparser
regions of the Nr distribution (for example, when r is large).

Specifically, Gale uses an averaging transform to generate quantities Zr
which represent averages of each nonzero Nr with the zeros around it:

Zr =
Nr

0.5(t− q)
(2.4)

Where q, r, t are successive indices of non-zero Nr values. If Nr is in a
well-estimated (non-noisy) part of the frequency distribution, (t−q) = 2 and
Zr = Nr

(0.5)(2)
= Nr. If Nr is noisy, i.e., lots of gaps in the Nr distribution, Zr

can differ from Nr by several orders of magnitude.
Once these Zr values are calculated, a simple linear regression of logZr on

log r suggests a simple linear smooth of these average transformed frequency
values (Figure 2.1). By averaging nonzero and zero Nr, we allow Zr to take
on continuous values, allowing the linear trend to continue past Nr = 1.
Using this linear regression, we can impute Zr values for any desired value
of r.

Thus, the smoothed Good-Turing frequency estimator includes this
simple and effective smoothing step. Here, Zr is represented by S(Nr), de-
noting the result of the smoothing of the Nr. The probability of encountering
an a single object that occurs r times is as follows:

PGT (r) =
(r + 1)

N
· S(Nr+1)

S(Nr)
(2.5)
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Figure 2.1: Average transform (Zr) permits simple linear smooth of frequen-
cies of frequencies on log-log scale. Data represent word frequencies from the
first two pages of this thesis.

2.2 Application to the cancer genome

At this point, smoothed Good-Turing frequency estimation may seem like a
useful tool in estimating probabilities of words or word combinations. But
how is this method applicable to mutations in the cancer genome? Perhaps
more importantly, how could it assist in the task of classifying cancers of
unknown primary sites?

2.2.1 Motivating Good-Turing and cancer classifica-
tion with a novelistic analogy

Suppose you are interested in classifying novels into two categories: Gothic
and science fiction. You hunt around in your library and obtain a training
set of novels. Two Gothic novels — Jane Eyre by Charlotte Brontë and
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Wuthering Heights by Emily Brontë — and two science fiction novels —
Fahrenheit 451 by Ray Bradbury and 1984 by George Orwell.

You find a loose page from an unknown novel, and you would like to
assign it to either your Gothic or science fiction bookshelf. To do this, you
might construct a table of word frequencies from your training set of books
like so:

Category Gothic SciFi

Word JE WH F451 1984

Romance 47 96 2 11
Machine 0 2 41 62

Love 101 167 23 52
... ... ... ... ...

Table 2.2: Toy example illustrating made-up word frequencies for different
documents and document categories (genres).

If your loose page contained an abundance of words like “Romance” or
“Love”, that would suggest that the word composition is most similar to
Jane Eyre and Wuthering Heights and is most likely a Gothic novel. On the
other hand, if your loose page contained words like “Machine”, that would
suggest it is more likely to be a Science Fiction book.

However, this reasoning is conditional on your loose page containing a
word like “Love” or “Machine”. There is no guarantee that these highly dis-
criminative words appear on your loose page. In fact, many words in your
loose page will not have appeared in your training set of novels at all. Rather
than ignoring these many new words, one could use Good-Turing frequency
estimation to estimate the probabilities of encountering these previously un-
seen words in your various documents and document categories. In this case,
Good-Turing probabilities are a proxy for vocabulary richness. In this novel-
istic setting, Good-Turing probabilities can help which genre is most likely to
generate a previously unseen word, or which genre has the richer vocabulary.
By estimating a category’s propensity for generating new words, you can use
hitherto unseen words to aid the assignment of your loose piece of paper to
a category.

This document classification example is directly analogous to an example
in cancer classification. Although instead of considering words and word
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frequencies, we consider genes and their mutation frequencies. And instead
of novels, we consider tumor samples that have been “read” using whole
exome sequencing. And instead of novel categories, we consider cancer type
categories.

In the case of The Cancer Genome Atlas (TCGA), there are 32 different
cancer types (categories), 10268 tumor samples, and 19441 genes mutated at
various frequencies. The table of genes, mutations, and cancer sites is shown
in Table 2.3 below:

Genes ACC (92) BLCA (411) ... UVM (80)

A1BG 0 0 ... 0

A1CF 2 1 ... 0
... ... ... ... ...

ZZZ3 1 0 ... 1

Table 2.3: Table denoting mutations in 19020 cancer genes (rows) in 32
different cancer types (columns) with number of tumors of each particular
cancer type in parentheses. Note that the matrix is very sparse (a number
of 0 entries).

Smoothed Good-Turing frequency estimation is applicable to somatic
variant mutation data because mutation data emulates text data in a critical
ways. Like the linguistic data described above, somatic mutations are count
data. Mutations (like words and word combinations) are essentially infinite
in varieties and numbers. Also, like text data, mutation data are dominated
by rare objects. Figure 2.2 demonstrates the right skewed frequency distri-
bution characteristic of gene mutation and linguistic data, wherein the vast
majority of units are rare (occur with frequency 1 in the dataset) and Nr

decays with increasing r. Validation on an external dataset illustrated that
≥ 66% of mutations im major cancer genes were new (hitherto unseen in
the TCGA cohort) (Chakraborty, Arora, Begg & Shen 2019b), illustrating
that future sequenced tumor samples will generate many new mutations,
highlighting the potential utility of the Good-Turing method.
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Figure 2.2: Figure from Chakraborty, Arora, Begg & Shen (2019b). In large
sequencing cohorts (The Cancer Genome Atlas shown), rare mutations are
comprise the vast majority of mutations. The x-axis is the frequency, r, at
which a mutation is observed across more than 10,000 tumors, and the y-
axis is how many mutations occur at that frequency, Nr (on log scale). The
substantial right skew indicates that the number of rare mutations vastly
outnumber the common mutations.

2.2.2 Applying smoothed Good-Turing frequency esti-
mation to mutations in the cancer genome

Chakraborty, Arora, Begg & Shen (2019b) define the Good-Turing formula
as follows1:

PGT (r) =
r + 1

m+ 1

S(Nr+1)

S(Nr)
(2.6)

Where PGT (r) measures the probability of occurrence in a randomly se-

1For the derivation of this formula, please see the supplement section 7.3
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lected new tumor of a variant that occurs r times in m previous tumor sam-
ples. Note that this formula estimates the probability of a particular somatic
variant mutation (e.g., C→T mutation at position 20,000 on Chromosome
6).

Note that estimating the probability of a hitherto unseen mutation (r =
0) requires knowledge of N0, of the total number of unseen mutations in
the population of cancers. This is a very difficult parameter to estimate;
how do we know the total number of unobserved mutations possible in all
human cancers? Chakraborty, Arora, Begg & Shen (2019b) circumvent this
problem by considering the probability of observing at least one hitherto
unseen variant (π0):

π0 = 1−
∏

∀variants;r=0

(1− PGT (r = 0)) (2.7)

Per the Good-Turing formula in equation 2.6, PGT (r = 0) can be written
as:

PGT (r = 0) =
1

m+ 1

N1

N0

(2.8)

so

π0 = 1−
(

1− N1/(m+ 1)

N0

)N0

(2.9)

Using the limit definition of the exponential function:

ex = lim
n→∞

(
1 +

x

n

)n
(2.10)

and supposing N0 is large, we can rewrite (2.9) as:

π̂0 ≈ 1− exp

[
− N1

m+ 1

]
(2.11)

This formula allows calculation of the probability of encountering at least
one previously unseen variant in a set of sequenced tumor samples of size
m that contain N1 singleton mutations (without requiring knowledge of N0).
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2.2.3 A brief note on assumptions

In Chakraborty, Arora, Begg & Shen (2019b), a product binomial model is
used to derive the Good-Turing estimator, requiring that variants occur in-
dependently of one another. This is an overly simplistic assumption, since
certain genes are known to demonstrate co-mutating or mutually exclusive
mutation patterns. However, Chakraborty, Arora, Begg & Shen (2019b) con-
tend that violating independence doesn’t have a major influence on results,
since the patterns were validated on an external dataset.

2.2.4 Results of applying smoothed Good-Turing fre-
quency estimation to mutations in the cancer
genome

In Chakraborty, Arora, Begg & Shen (2019b), equation 2.11 was applied to
genes mutated in more than 3% of tumor samples, by considering Nr values
per gene and per cancer type. Interestingly, the Good-Turing probability
estimates varied between genes and between cancer types. In Figure 2.3,
the x-axis denotes the 32 different cancer types in the TCGA data, and the
y-axis denotes a select group of 13 genes. The bubbles are sized based on the
probability of encountering at least one previously unseen mutation in that
particular gene in a future sequenced tumor of a particular cancer type.

For instance, the gene VHL almost exclusively produces previously unseen
mutations in the KIRC cancer type, a particular form of renal cancer. Thus,
if a tumor of unknown primary site contained a previously uncatalogued
mutation in the VHL gene, that would lend some evidence that the tumor
may belong to the KIRC type. Chakraborty, Arora, Begg & Shen (2019b)
found that unseen variant signals were statistically significant2 across hun-
dreds of genes and could be validated on an external mutation dataset. They
also found that the task of cancer type classification could be improved by
incorporating unseen variant probabilities into a machine learning classifier
(Chakraborty et al. 2020). This illustrates the potential utility of the “hidden
iceberg” of unseen mutations in important clinical tasks.

2Statistical significance was determined by permutation test, comparing Normalized
Mutual Information (NMI) of true unseen variant probabilities to a null distribution of
NMIs generated by permuting variant tissue labels.
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Figure 2.3: Patterns of probabilities of encountering at least one hitherto un-
seen variant (calculated using equation 2.11) in different genes and different
cancer types.

2.2.5 The tip of the mutational iceberg: limitations
and proposed problem

Chakraborty, Arora, Begg & Shen (2019b) highlight that while they focused
their analysis to single nucleotide, non-synonymous somatic variant muta-
tions in non-hypermutated tumors, their analysis is extendable to more com-
plex mutation types and all but the most severely hypermutated tumor types.

Most importantly, the authors mention that they restricted their anal-
ysis to only relatively frequently mutated genes (mutated in at least 3% of
all tumor samples). This amounted to fewer than 500 genes, or approxi-
mately 2.5% of the cancer exome, which mostly represented primary can-
cer genes. Only considering cancer genes does not effectively represent the
genome as the whole. Indeed, it is believed that oncogenic mutations display
a “long-tail” phenomenon, where the vast majority of genes driving cancer
are sparsely mutated (Leiserson et al. 2015).

In order to go beyond the tip of the “hidden iceberg” of unseen
somatic mutations, we must be able to identify unseen variant sig-
nals in the 98.5% of the cancer exome that is sparsely mutated.
This is the problem that is the central focus of my thesis, and that I intend
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Figure 2.4: The tip of the mutational iceberg (shown in red), are the genes
analyzed by Chakraborty, Arora, Begg & Shen (2019b). The dark part of
the iceberg – variants in sparsely mutated genes – remains unexplored.

to address by aggregating mutational signals in gene groups.
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Chapter 3

Cancer classification and data
de-sparsification

In order to identify cancer type-specific unseen variant signals in the 98.5%
of the cancer exome that is sparsely mutated, we must aggregate somatic
mutation data in a statistically or biologically principled manner, or else lose
out on potential discriminatory signals. This chapter provides an overview
on machine learning-based cancer classification and the role of data de-
sparsification in cancer classification efforts.

It’s worth noting that most attempts to identify cancer biomarkers and
molecular patterns for the purposes of cancer classification rely on tran-
scriptomic (gene expression) data. However, DNA sequencing (as opposed
to RNA-Seq or microarray technologies) is most commonly used in clinical
practice. Somatic mutation data is also considerably sparser than gene ex-
pression data. Some research has been conducted on data-desparsification in
the realm of cancer subtype classification using somatic mutation data which
is detailed in the next section.

3.1 Cancer classification using somatic muta-

tions

To my knowledge, the first attempt at using a machine learning classifier to
predict cancer type using somatic mutation data was achieved by Chen et al.
(2015). Using a large dataset of 6751 samples and approximately 21,000
genes and a support vector machine (SVM) approach, the authors achieved
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moderately high accuracy of 62% in predicting cancers spanning 17 subtypes
(i.e., tissues and histologies). However, the features used in their models were
rather crude; each mutation was labeled according to the gene it occurred
in, its mutation type (single nucleotide, indel, etc.), and the chromosome it
appeared on.

Instead of considering individual mutations as features, Soh et al. (2017)
considered somatic variants at the gene level. In other words, the genes in
which the mutations occurred are used as predictors for building machine
learning models. Using 100 genes as predictors and a SVM approach, the
authors achieved an accuracy of nearly 50% in predicting 28 cancer types. In
the approach of Soh et al. (2017), the number of genes is much smaller than
the number of mutations, and the number of genes is a known quantity. Thus,
Soh’s approach dramatically decreased the dimension of the learning problem
and could handle the problem of previously unseen mutations, simply by
mapping a mutation to the gene it occurred in.

Both Chen and Soh’s approaches are reasonable ways of approaching
the cancer classification problem. Chen’s approach considered mutations as
features, where each mutation was encoded using to a few summary features.
Soh’s approach aggregated mutations within genes and considered genes as
the features for the learning task. However, both of these approaches ignored
variant-level information that could be critical to classifying cancer types.
For example, the KRAS G12C variant is primarily associated with lung
adenocarcinoma while KRAS G12R is almost exclusively associated with
pancreatic cancer (Chakraborty et al. 2020). The frequencies of different kras
mutations between different cancer types are shown in Figure 3.1, reflecting
how different mutations in the same gene can encode different cancer type
specific signals. This insight motivates the need to incorporate variant-level
information in a prediction algorithm.

Recognizing the limitations of a gene-centric approach, recent efforts to
classify cancers by examining broader patterns of mutation have achieved
greater success. Salvadores et al. (2019) segmented the genome into several
1 megabase segments to capture the regional mutation density of passenger
mutations. Using regional mutation density and trinucleotide context as fea-
tures, their approach classified cancer primary site with 92% accuracy as com-
pared to 36% for the models built on driver genes only. Another recent study
by Jiao et al. (2020) also segmented the genome into 1 megabase segments
and found that regional passenger mutation density was the most predictive
feature for predicting cancer primary site. A deep learning classifier built on
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Figure 3.1: Figure from Pantsar et al. (2018). Proportions of various muta-
tions to theKRAS gene across 9 cancer types reveals that different mutations
show preferences for different tissues.

passenger mutation distribution and mutation type achieved classification
accuracies on the order of 80-90%, twice that of trained histopathologists. It
is critical to note that these studies by Salvadores and Jiao rely on Whole
Genome Sequencing, and the efficacy of their approaches were weakened when
considering only exome data. Nevertheless, improved classification using 1
Mb genomic regions indicates that breaking from a gene-centric perspective
with respect to classifying cancers according to their somatic mutation pro-
files may improve classification importance.

A recent study by Young et al. (2020) took the approaches of Salvadores
and Jiao a step further. Recognizing that the 1Mb segments were rather
ad hoc, Young developed a dynamic programming approach to optimally
segment the genome into regions to maximize differences in relative mutation
rates across different cancer types. This “genome gerrymandering” approach
achieved a 20% reduction in the number of mutations needed to discriminate
between cancer types.
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3.2 De-sparsifying somatic mutation data

Classifying cancers using somatic mutations is extremely challenging because
the data are sparse: tumor exomes only possess a handful of mutations,
and many represent passenger mutations that aren’t directly involved in the
progression of carcinogenesis. Typically, machine learning classifiers don’t
perform well on sparse data. Thus, methods to “de-sparsify” somatic muta-
tion data in a principled manner to facilitate the learning task are useful to
classification efforts in cancer.

3.2.1 Data-driven de-sparsification methods

This subsection details several data-driven de-sparsification methods for so-
matic mutation data that I’ve come across in the literature. I emphasize
“Data-driven”, as these methods rely on minimal biological assumptions,
and instead use data-encoding tricks, feature selection strategies, or neural
networks to de-sparsify their somatic mutation data.

Yuan et al. (2016) developed an algorithm for de-sparsifying somatic
mutation data and enhancing cancer type prediction using a clever data-
encoding trick. The DeepGene algorithm de-sparsifies somatic mutation data
using a hashing function that returns the index of the nonzero entries for
each feature, which compresses a large, sparse vector of mutation counts to a
small, dense vector of indices. For example, a sparse N ×1 vector containing
mutation counts of a particular gene over N samples can be reduced to a
b× 1 vector, where b << N represents the number of nonzero entries in the
initial vector. Once these indices are generated, they are supplied (along
with a few other features) to train a Deep Neural Network. Their algorithm
achieved a 24% boost in accuracy as compared to standard methods like
SVM, k-nearest neighbors, and Naive Bayes, illustrating the utility of this
method. In short, DeepGene de-sparsifies somatic mutation data by using a
clever data-encoding trick, which acts to improve classification performance.

Dikaios (2020) used the same data-encoding trick as DeepGene, but mod-
ified DeepGene’s approach for a priori feature selection. Dikaios used a
L1 penalized neural network approach to encourage a parsimonious model
that retained groups of relevant features. This approach represented a more
principled approach for selecting relevant features. Indeed, his sparse in-
put neural network approach outperformed gradient boosting, deep neural
networks, and support vector machines by achieving 73% accuracy on an
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independent testing dataset in classifying cancers of 32 different types. In
summary, Dikaois reprised the same hashing trick used in DeepGene, but
used a more principled method for selecting the sets of genes to be included
in the neural network model.

Another approach by Hasan & Lonardi (2018) eschewed the encoding
trick and improved upon the performance of DeepGene using a logistic re-
gression model with an information theoretic feature selection criterion. For
the purposes of feature selection, the authors first clustered genes according
to the cosine similarities of their mutation vectors, then selected the most rel-
evant genes (top N genes sorted by normalized mutual information between
the feature and class label) from each cluster to train a logistic regression
model. Hasan and Lonardi’s approach improved upon DeepGenes’ accuracy
in classifying 12 cancer types by approximately 2%. In summary, Hasan and
Lonardi developed a more interpretable approach that used clustering and
information theory to select the best subset of features for training a logistic
regression model for cancer prediction.

An entirely different approach was employed Palazzo et al. (2019), who
used an autoencoder (a neural network designed to find reduced and simple
representations/embeddings of complex data) to find embeddings for tumor
somatic mutation profiles. Embeddings are simply low dimensional, continu-
ous valued representations of high-dimensional, discrete data, learned using
a neural network1. Palazzo’s autoencoder approach was able to represent
somatic mutation profiles in a latent space of 50 dimensions that retained
cancer type specific signals. The embeddings were used to build a SVM
which improved performance in classifying 35 out of 40 cancer types com-
pared to models agnostic to these embeddings. In short, Palazzo reduced
data-sparsity by training a neural network to learn efficient, low-dimensional
representations of somatic mutation profiles of tumor samples.

However, the classification strategies outlined above struggle with inter-
pretability. DeepGene’s de-sparsification strategy effectively compresses the
sparse mutation data, but ignores variant-level information by consider mu-
tations at the gene-level. Dikaios’ method falls into the same trap. Hasan
and Londardi’s method selects a set of highly relevant features (genes), likely
omitting potentially genes that are sparsely mutated but relevant to carcino-

1Embeddings are often used in the case of linguistic data, where high dimensional
matrices of word and word frequencies can be reduced to smaller, dense representations
that retain semantic meaning.
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genesis. Palazzo’s method maps tumor mutation profiles to a latent space,
which while effective for de-sparsification, lacks interpretability.

3.2.2 Biologically-motivated de-sparsification methods

An alternative to these data-driven approaches involves methods that use
biological datasets as priors to inform the data de-sparsification strategy.
Indeed, it is widely accepted that cancer is not a disease characterized by
individual mutations or genes, but of multiple functionally-connected genes
working in concert to promote excess cell proliferation (Hanahan & Weinberg
2000, Hofree et al. 2013). The following subsection details several of these
“biologically-motivated” methods encountered in the literature.

Pathways and networks are similar yet related concepts. They both rep-
resent systems of interacting genes/biomolecules. Pathways are composed of
small numbers of genes/biomolecules that play roles in well-studied processes.
Pathways represent consensus systems supported by decades of research and
are typically visualized in linear diagrams (Creixell et al. 2016). A classic
example of a pathway is the electron transport chain in mitochondria: a
sequence of proteins that collaborate to generate a chemical gradient that
drives the synthesis of the universal energy currency of cells. Networks com-
prise genome/proteome-wide interactions detected through high throughput
screens or integration of multiple datasets. Networks are abstractions of cel-
lular logic, noisy, and challenging to visualize. However, networks contain
information that is not covered in well-defined pathways (Creixell et al. 2016).

Hofree et al. (2013) developed a method to reduce somatic mutation data
sparseness by smoothing mutations over a gene-gene interaction network. In
their approach, a sample of genes and patients are projected onto a gene
interaction network, smoothed, and clustered using network NMF. The pro-
cedure is repeated several times, with the consensus matrix representing the
final clustering of the genes. This approach relies on the idea that a mu-
tation in one gene implicates all other genes it interacts with, i.e., a “guilt
by association”. The network propagation approach de-sparsifies the muta-
tion data by smoothing or “filling in” the mutational gaps in a gene-gene
network. Their approach effectively identifies cancer subtypes predictive of
survival, treatment response, and histology, and identifies network regions
characteristic of each subtype.

Kuijjer et al. (2018) developed a method called SAMBAR (Subtyping
Agglomerated Mutations By Annotation Relations) which summarizes muta-
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tions using pathway annotation scores. The authors focused on 2219 genes ei-
ther directly involved in carcinogenesis or with functional connections to such
genes, and summarized the somatic mutations in 1135 canonical pathway
gene signatures. They computed gene specific scores corresponding to the
proportion of the total mutation rate (number of mutations per nucleotide)
consumed by each gene. Then pathway mutation scores were obtained by
summing the individual gene scores, correcting for the number of pathways
each gene belongs to and the number of genes present in a pathway.

De-sparsification using networks and pathways each present their own
benefits and challenges. Our knowledge of gene and protein interaction
networks are more flexible and extensive than our knowledge of pathway
maps. Also, gene-gene networks have empirically proven useful in identifying
biomarkers and important subnetworks involved in carcinogenesis. However,
these networks rely on a set of prior interactions that may not be relevant to
the tumor or cancer type at hand. Network-based methods may miss genes
that interact indirectly via a larger pathway, and exhibit ascertainment bias
by overemphasizing highly connected genes or genes connected to highly mu-
tated genes. Alternatively, pathway-based methods consider suites of genes
with known relevance to cancer biology. Pathways are better characterized,
provide the best snapshot of functional relationships between genes, and are
unlikely to produce irrelevant interactions. However, pathways represent a
much more restrictive biological prior, as the vast majority of genes (which
may be relevant to carcinogenesis) do not map to important cancer pathways.

Thus, network and pathway-based de-sparsification strategies represent
competing sides of the bias-variance tradeoff. Network-based analyses will
exhibit higher variance: rich interaction networks may over-represent the
number of true interactions among genes in the tumor samples in our dataset.
Pathway-based approaches will exhibit higher bias : potentially underfitting
the gene interactions in our tumor samples.

3.2.3 Why de-sparsify?

From a practical point of view, de-sparsifying somatic mutation data could
enable more precise calculation of Good-Turing probabilities, as the accuracy
of Good-Turing probabilities is predicated on the precision of the N1 estimate
(or the estimated number of singleton variants). Additionally, a diagnosti-
cally relevant gene group is more likely to be mutated than a diagnostically
relevant gene; de-sparsifying in groups of genes can increase the likelihood of
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observing a mutation in a relevant predictor. Lastly, machine learning classi-
fiers in general do not perform well with sparse data. Grouping genes can also
reduce the dimensionality of the data, potentially reducing the complexity
of a machine learning model and increasing generalization performance.

De-sparsifying somatic mutation data in a biologically principled man-
ner also presents a number of other benefits. In high-dimensional inference
scenarios, aggregating mutations within groups can increase the likelihood
of passing a statistical detection threshold while mitigating multiple testing.
Second, grouping genes in a biologically principled manner can aid inter-
pretation, by connecting genomic alterations to concepts like the cell cycle
or apoptosis. Third, gene groupings can facilitate comparisons across other
datasets by providing a common feature space. Lastly, principled groupings
can facilitate integrating other data types relevant to cancer biology (Creixell
et al. 2016).

3.3 De-sparsification in this thesis

This thesis will explore two different somatic mutation de-sparsification strate-
gies with differing degrees of bias and variance.

The first method relies on few biological assumptions. The dataset will
first be filtered for genes with known association to cancer to eliminate pas-
senger genes. Good-Turing probabilities for encountering hitherto unseen
mutations per cancer type will be computed on a per gene basis, and pair-
wise correlations between genes will be computed. Hierarchical clustering
with a hybrid branch cut will be performed on the matrix of angular dis-
tances2 between genes to identify and extract modules of genes with similar
mutation probability patterns. Good-Turing probabilities will then be com-
puted for gene clusters which will be subjected to downstream analyses.

The second method relies more on biological prior assumptions. The
dataset will first be filtered for genes with known association to cancer
to eliminate passenger events. Genes will be grouped according to path-
way memberships, where pathways represent “gold-standard” annotations of
biomolecular interactions in cells. Good-Turing probabilities will be com-
puted on a per-pathway basis and will be subjected to downstream analyses.

These two methods will be described in detail in the following chapter.

2The angular distance is the dissimilarity metric, defined as the arcosine of the Pearson
correlation.
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Chapter 4

Methods

This chapter presents a full overview of the experimental pipeline, including
description of the datasets used, de-sparsification methods used, computation
of Good-Turing probabilities, and downstream analyses and visualizations.

4.1 Somatic mutation dataset

The mutation dataset used in this thesis is a publically-available dataset of
non-synonymous single nucleotide somatic variant mutations in 10,295 tumor
samples spanning 32 different primary site types. The dataset was made
available through the R package, variantprobs (Chakraborty, Begg & Shen
2019). I restricted analysis to tumors with known cancer type labels and
which belonged to mutation signatures with low to moderate mutation rates,
which prevented confounding effects of hypermutated tumor signatures. I
ultimately included 6689 Non-hypermutated tumors, 810 APOBEC (2, 13)
signature tumors, 1120 Smoking (4) signature tumors, and 1050 MMR (6,
15, 20, 26) signature tumors in my dataset for analysis1. This produced a
filtered dataset of 9669 tumor samples. A snapshot of the dataset is included
below (Figure 4.1) along with a summary table illustrating the number of
tumor samples per cancer type (Table 4.1).

1The numbers within parentheses indicate the SBS numbers belonging to each dominant
signature group
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Cancer Code Disease Number of tumors
ACC Adrenocortical carcinoma 92

BLCA Bladder urothelial Carcinoma 403
BRCA Breast invasive carcinoma 1013
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 289
CHOL Cholangiocarcinoma 34

COADREAD Colorectal adenocarcinoma 543
DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 37
ESCA Esophageal carcinoma 184
GBM Glioblastoma multiforme 393
HNSC Head and Neck squamous cell carcinoma 499
KICH Kidney Chromophobe 64
KIRC Kidney renal clear cell carcinoma 368
KIRP Kidney renal papillary cell carcinoma 278
LAML Acute Myeloid Leukemia 136
LGG Brain Lower Grade Glioma 522
LIHC Liver hepatocellular carcinoma 363
LUAD Lung adenocarcinoma 564
LUSC Lung squamous cell carcinoma 480
MESO Mesothelioma 80

OV Ovarian serous cystadenocarcinoma 408
PAAD Pancreatic adenocarcinoma 174
PCPG Pheochromocytoma and Paraganglioma 177
PRAD Prostate adenocarcinoma 491
SARC Sarcoma 228
SKCM Skin Cutaneous Melanoma 67
STAD Stomach adenocarcinoma 429
TGCT Testicular Germ Cell Tumors 149
THCA Thyroid carcinoma 488
THYM Thymoma 122
UCEC Uterine Corpus Endometrial Carcinoma 466
UCS Uterine Carcinosarcoma 49
UVM Uveal Melanoma 79

Table 4.1: Cancer categories and cohort sizes in filtered TCGA dataset.
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Figure 4.1: Snapshot of TCGA dataset. “patient id” denotes the unique tu-
mor sample identifier, “Hugo Symbol” denotes the gene name, “Variant” de-
notes the unique variant identifier (gene, chromosome, index, and nucleotide
change), “Cancer Code” denotes the cancer type, and “MS” denotes the mu-
tation signature label.

4.2 Implementing Good-Turing probability es-

timation

Good-Turing probabilities were calculated per feature (either gene or gene
group) and per cancer type using the “goodturing probs” function available
through the R package, variantprobs (Chakraborty, Begg & Shen 2019). The
function takes as input a vector of vf , denoting how frequently variants are
observed in the training set for a particular feature (gene or gene group)
and cancer type. “goodturing probs” also takes as input m, denoting the
number of tumor samples in that particular cancer type. For example, a
vf = (1, 4, 7) indicates that the first variant appeared once in the training
set, the second variant appeared four times, and the third variant appeared
seven times across the training samples.

The function outputs probabilities of encountering variants at various
values or r, including an estimate of the probability of encountering at least
one previously unseen variant in a future tumor sample of that particular
cancer type (as calculated via Equation 2.11). The following work considers
the Good-Turing probabilities formula as:

π̂0 ≈ 1− exp

[
− N1

m+ 1

]
(2.11)

Note that the probability estimate (π̂0) described in equation 2.11 corre-
sponds to the probability of observing at least one hitherto unseen variant
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in a future tumor sample. In other words, equation 2.11 refers to the total
probability occupied by the unseen variants in the sample space. For the
remainder of this thesis, probabilities of encountering at least one hitherto
unseen variant in a randomly selected future tumor sample will be generally
referred to Good-Turing probabilities.

4.2.1 Validating Good-Turing probabilities

In an effort to validate the Good-Turing probabilities generated using each
de-sparsification method, I conducted a 50-50 train-test dataset split of the
16 most common cancer types: BLCA, BRCA, COADREAD, GBM, HNSC,
KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PRAD, STAD, THCA, UCEC.
I focused on the most common cancer types so that there would be sufficient
sample sizes in both training and testing datasets. The 7708 tumors were
split into 2 datasets containing 3854 tumors each.

For the training dataset, I ran the specific de-sparsification procedure and
calculated Good-Turing probability estimates per module2/pathway and per
cancer type. For the test dataset, I measured the observed proportions of
tumors of each cancer type that generated a hitherto unseen variant per
module/pathway. For example, if out of 100 tumors of cancer type A in the
test set, 50 contained mutations in Module 1 that were not observed in the
cancer type A samples in the training dataset, then the observed proportion
of tumors that produced a hitherto unseen variant in Module 1 would be 1

2
.

I measured the concordance of Good-Turing estimates and observed pro-
portions of previously unseen variants using Lin’s concordance correlation
coefficient (CCC) (Lin 1989). Lin’s CCC measures the agreement between an
estimate (in this case, Good-Turing probabilities estimated from the training
set) and a gold-standard measurement (in this case, the observed probabil-
ities of encountering previously unseen mutations in the test set). A Lin’s
CCC close to 1 would indicate that the de-sparsification and estimation pro-
cedure is generating reliable estimates of hitherto unseen variant probabilities
that agree with observed proportions of previously unseen mutations.

2“Module” refers to a cluster of genes defined using the hierarchical clustering de-
sparsification procedure.
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4.3 De-sparsification methods

This section details the two somatic mutation data desparsification strategies
explored in this thesis.

4.3.1 Data-driven strategy: hierarchical clustering of
mutation probability correlations (HCOMPC)

This de-sparsification strategy represents a lower bias/higher variance ap-
proach. It relies on no biological prior knowledge, operating by clustering
genes according to the correlations between their mutation probabilities over
cancer types.

A priori filter for putative cancer genes

To eliminate passenger genes which encode noisy (i.e., non-cancer-type-specific)
mutation events, only 2352 cancer-associated genes from the Catalogue of So-
matic Mutations in Cancer (COSMIC) (Tate et al. 2019) and Supplemental
Table 3 from Östlund et al. (2009) were subject to analysis. This gene list
was available through the SAMBAR R package (Kuijjer 2021).

Computation of matrix of pairwise distances between genes

HCOMPC works by first calculating Good-Turing probabilities for each gene
of interest across each cancer type. This creates a n × 32 matrix contain-
ing the Good-Turing probabilities for n genes across 32 cancer types. For
example, matrix entry xi,j represents the probability of observing a hitherto
unseen mutation in Gene i in cancer type j. Then the Pearson correlation is
calculated between probability vectors for each pair of genes; this produces
a n × n matrix MS of probability correlations. Since hierarchical clustering
algorithms in R require a dissimilarity matrix, I convert the matrix of corre-
lations (a similarity measure) to a matrix of angular distances using equation
4.1:

dCor(xi,·, xj,·) = arccos(Cor(xi,·, xj,·)) (4.1)

Angular distance has the desired property of forcing highly positively
correlated genes to have a dCor close to 0, while making uncorrelated and
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negatively correlated genes have a higher dCor. For uncorrelated genes dCor =
π
2
.

Applying equation 4.1 to MS, the matrix of correlations between Good-
Turing probabilities for genes, produces a matrix of angular distances, MD.
MD can now be supplied to the hierarchical clustering algorithm hclust in
R, which creates a dendrogram delineating the distances between the Good-
Turing probability profiles of different genes.

Identification of gene clusters using dynamic hybrid cut

In hierarchical clustering, modules/clusters are represented as branches of
a dendrogram/tree. The most common approach for defining clusters in a
dendrogram is choosing a fixed cut height and continuous branches of objects
produced by the cut are considered distinct clusters. However, the fixed
height cut approach is heuristic and doesn’t perform well in complicated
dendrogram structures (especially with nested clusters).

To obtain more accurate representation of clusters in a dendrogram, there
exist tree cut algorithms that instead consider branch shape. One such
method that I use in this thesis is an agglomerative (bottom up) approach
called “Dynamic hybrid” (Langfelder et al. 2008) to generate clusters.

The first step in Dynamic hybrid is cluster detection. Preliminary clusters
are defined by the following criteria:

1. Clusters must exceed a minimum threshold size.

2. The tip of each branch (the core) should be tightly connected.

3. Each cluster must de distinct from its surroundings.

4. Objects that are too far from the clusters are excluded.

In order for a branch to pass the first cluster criterion, the branch must
contain more than N objects, where N is a user-specified parameter indicat-
ing the minimum cluster size. In order to pass the second cluster criterion,
we introduce the core scatter statistic, d̄, which is the average of the pair-
wise dissimilarities between objects in a core. In order to be a cluster, the
core scatter d̄ < dmax, a user-specified parameter indicating the maximum
permissible core scatter. In order to pass the third cluster criterion, we in-
troduce the cluster gap statistic, g, which represents the difference between d̄
and the joining height where the proposed cluster attaches to the rest of the
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Figure 4.2: Figure from Langfelder et al. (2009). Figure illustrating cluster
cores (blue), the core scatter (average dissimilarity amongst the core, green),
the gap (difference between scatter and join height to rest of dendrogram,
brown), and the max cut height (red).

dendrogram. In order to be designated a cluster, g < gmax, where gmax is a
user-specified parameter indicating the maximum permissible gap. In order
to pass the fourth criterion, all joining heights must be at most hmax, which
is a user-specified parameter denoting the maximal join height (Langfelder
et al. 2009). For a visual interpretation of cores on an example dendrogram,
gap, core scatters, and max cut height, see Figure 4.2.

There exists no clear method for choosing “optimal” parameter values,
although the authors include an argument, deepSplit, which allows users to
choose from sets of parameters that encourage different sensitivities of cluster
splitting. I heuristically chose a minimum cluster size of 3 and varied the
value of deepSplit between 0 and 3, providing a range of sensitivity to cluster
splitting. Varying deepSplit generated sets of clusters that varied widely in
terms of size.

The algorithm steps through the dendrogram from the bottom up, merg-
ing either two objects, merging an object to a branch, or merging two
branches. Merging two objects generates a new branch. When merging
two branches, if at most one branch passes the cluster criteria, the branches
are merged. If both branches pass the criteria, the algorithm passes to the
next step (Langfelder et al. 2009).

The second optional step in the algorithm involves the assignment of
unassigned objects to existing clusters. The average dissimilarity of an
object (single object or tiny branch) to existing clusters is computed, and
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then the object is merged to its nearest cluster. Since Partitioning Around
Medoids (PAM) clustering involves assigning objects to their nearest medoid,
the merging of unassigned objects represents a hybrid of hierarchical cluster-
ing and PAM (Langfelder et al. 2009). The authors note that the decision to
include the PAM step should be determined by whether sensitivity or speci-
ficity is favored. I prioritize specificity, i.e., high confidence that genes in the
same cluster belong together, so I excluded the PAM assignment step in my
runs of Dynamic Hybrid. This resulted in several genes being unassigned to
clusters.

Aggregating mutation data among clusters and Good-Turing prob-
ability estimation

Once clusters of genes are identified, I will aggregate or sum the mutation
data among clusters. For instance, if Genes i and j are in the same cluster, the
aggregated mutation data for their cluster would be represented by xi,·+xj,·.
After aggregating mutations for each cluster, I will recalculate the Good-
Turing probabilities as outlined in the previous section. Instead of treating
genes as the genomic units of interest, HCOMPC considers gene clusters as
the genomic units of interest.

4.3.2 Biologically-driven strategy: pathway member-
ship based grouping (PMBG)

The PMBG de-sparsification strategy represents a higher bias/lower vari-
ance approach. It considers mutations aggregated/summed within known
biological pathways.

A priori filter for putative cancer genes

To eliminate passenger genes which encode noisy (i.e., non-cancer-type-specific)
mutation events, only 2352 cancer-associated genes from the Catalogue of So-
matic Mutations in Cancer (COSMIC) (Tate et al. 2019) and Supplemental
Table 3 from Östlund et al. (2009) were subject to analysis. This gene list
was available through the SAMBAR R package (Kuijjer 2021).
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Pathways dataset

PMBG works by aggregating (summing) somatic mutation data within path-
ways. Pathways represent groups of genes that share direct, functional in-
teractions that determine a biologically relevant process. Pathways are often
defined through years of rigorous experimentation on the part of domain ex-
perts and represent the gold standard of biomolecular interactions. While
quite complex, knowledge of pathways are incomplete, and current anno-
tated pathways probably underestimate the true complexity of biomolecular
interactions within cells.

Gene set files containing pathways were acquired from MSigDb (Subra-
manian et al. 2005) in .gmt format3. The gene set file used for PMBG was the
complete Canonical Pathways gene set (“c2.cp.v7.3.symbols.gmt”), contain-
ing 2887 canonical pathways derived from several pathway databases includ-
ing BioCarta, KEGG, Matrisome Project, Pathway Interaction Database,
Reactome, SigmaAldrich, Signaling Gateway, SuperArray SABiosciences, and
Wikipathways. The gene set file were converted to binary adjacency matrices
A where Ai,j = 1 indicates the presence of Gene j in Pathway i using the
SAMBAR R package (Kuijjer 2021).

Aggregating mutation data among pathways and Good-Turing prob-
ability estimation

Pathways that contained fewer than 3 genes were eliminated. Mutation
counts were aggregated/summed identically to the HCOMPC procedure,
except instead of summing mutations per cluster, mutations are summed
within known pathways. Then Good-Turing probabilities were calculated
per pathway and per cancer type according to the procedure outlined in
Section 4.2. Instead of treating genes as the genomic units of interest (per
Chakraborty, Arora, Begg & Shen (2019b)), or clusters of genes as the ge-
nomic units of interest (per HCOMPC), PMBG considers biological pathways
defined by domain experts as the units of interest.

3.gmt format refers to gene matrix transposed format, often used to describe gene
groups.
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4.4 Normalized Mutual Information

Normalized mutual information (NMI) is the method used to rigorously mea-
sure the association between Good-Turing probabilities and cancer types in
this thesis. In other words, NMI is a measure of the cancer type specificity
of the hitherto unseen variant probabilities.

4.4.1 Motivation

The following section is adapted from Chakraborty, Arora, Begg & Shen
(2019a)

In general, Normalized mutual information (NMI) measures the nonlinear
dependence between two random variables. In the context of this thesis,
NMI quantifies the association between the probability of occurrence of a
particular variant and cancer type. NMI is calculated according to equation
4.2 below, where yj denotes the presence (1) or absence (0) of the j-th variant
and let C denote the cancer type associated with the tumor C = 1, . . . , 32.

NMI(yj, C) =
MI(yj, C)√
H(yj)H(C)

(4.2)

and MI(yj, C) is the mutual information between yj and C:

MI(yj, C) =
1∑
y=0

K∑
k=1

P (yj = y, C = k) log
P (yj = y, C = k)

P (yj = y)P (C = k)

=
1∑
y=0

K∑
k=1

P (yj = y|C = k)P (C = k) log
P (yj = y|C = k)∑K
i=1 P (yj = y|C = i)

(4.3)

and H(yj) and H(C) are the Shannon entropies of yj and C:

H(yj) =
1∑
y=0

logP (yj = y)P (yj = y)

=
1∑
y=0

K∑
k=1

log

( K∑
k=1

P (yj = y|c = k)P (c = k)

)
P (yj = y|C = k)P (C = k)

(4.4)
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and

H(c) =
K∑
k=1

logP (c = k)P (c = k) (4.5)

In the above formulas, the cancer type specific variant probabilities P (yj =
y|c = k) are calculated using the Good-Turing estimation approach, and the
cancer type probabilities P (C = k) are estimated by the proportion mk∑K

i=1mi

where mk denotes the number of tumors in the dataset of type k. For more in-
formation on how to explicitly calculate these values, please see Chakraborty,
Arora, Begg & Shen (2019a).

It can be useful to consider normalized mutual information as the non-
linear kin to the Pearson correlation. Indeed, the Pearson correlation is a
normalized version of the covariance, scaled by the variance to encompass
values in the range [−1, 1]. However, Pearson correlation can only measure
linear association between two random variables. Normalized mutual infor-
mation is capable of measuring nonlinear association between two random
variables. As shown in equation 4.2, the NMI is equal to MI scaled by
square root of the product of the marginal Shannon entropies (a measure of
uncertainty in a random variable, akin to the variance). Normalized mutual
information takes on values in the range [0, 1], with 0 denoting independence
and 1 indicating determinance.

NMI values were calculated using the “calc minfo” function available in
the R package variantprobs (Chakraborty, Begg & Shen 2019).

4.4.2 Generating null distribution of NMIs

It is of great interest to not only quantify the cancer type specificity of
unseen variant probabilities, but also determine if the observed cancer type
specificities exceed thresholds that could be explained by random chance. To
do this, I employed a permutation testing approach which generates a set of
NMI reference values under the null hypothesis that there is no association
between cancer type and variant occurrence. I impose this null hypothesis
by randomly permuting the cancer label for all tumor samples in the dataset
before calculating Good-Turing probabilities and NMI values. Note that this
approach ensures that the number of cancers of each type remain constant.

In this thesis, I generate a reference distribution of NMIs under 1000
cancer label permutations, and compare the 99th quantile of the null dis-
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tribituion of NMIs to the observed values. Any observations that exceed this
value are considered significantly cancer type specific with 99% confidence.

4.5 Visualization

All visualizations were constructed in R using the ggplot R plotting frame-
works (Wickham 2016) the “heatmap” function through the R package stats
(R Core Team 2020).
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Chapter 5

Results

5.1 De-sparsification by hierarchical cluster-

ing of mutation probability correlations

(HCOMPC)

The goal of the following section is to evaluate the performance of the
HCOMPC de-sparsification algorithm in generating clusters with significantly
cancer type specific and reproducible Good-Turing probabilities.

5.1.1 Hierarchical clustering, dynamic hybrid pruning,
and module detection

In order to de-sparsify the somatic mutation data, genes need to be grouped
into clusters in a principled manner. This subsection details the results of
hierarchically clustering genes’ hitherto unseen mutation probabilities ac-
cording to a correlation distance.

Hierarchical clustering of the pairwise angular distances (as calculated
via equation 4.1) between Good-Turing probabilities of the 2352 cancer-
associated genes was performed. The resulting dendrogram was pruned using
the dynamic hybrid cut method (Langfelder et al. 2008) with a minimum clus-
ter size set to 3 genes and varying values of the deepSplit parameter which
modulates the sensitivity to cluster splitting. Summary statistics including
the total number of clusters, the maximum module size, the median module
size, and the number of genes unassigned to a cluster are shown in Table 5.1.
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deepSplit # of modules Med module size Max module size # unassigned
0 196 9 71 40
1 286 6 44 40
2 401 5 21 78
3 485 4 21 80

Table 5.1: Summary statistics for different runs of the Dynamic Hybrid prun-
ing approach while varying values of the deepSplit parameter. Summary
statistics illustrate that as deepSplit increases, sensitivity to branch splitting
increases.

As anticipated, increasing the deepSplit parameter increased the number of
modules and decreased module sizes, demonstrating a greater sensitivity to
cluster splitting.

Visualization of the different pruning runs on the dendrogram is shown
in Figure 5.1. The different color bars below the dendrogram denote the
different pruning runs while varying the deepSplit (ds) parameter value. The
colors in the color bars denote module membership. For the remainder of
this section, clusters of genes will be referred to as modules.

5.1.2 Good-Turing probabilities per module

Once modules were detected using hierarchical clustering with hybrid branch
pruning, probabilities of encountering hitherto unseen variants in a randomly
selected future tumor sample were estimated for each module. Modules that
were uncorrelated with background mutation rates were identified. This sub-
section details the output of Good-Turing probability calculations of mod-
ules identified using the HCOMPC approach and details the identification of
modules uncorrelated with background mutation rate patterns.

After module detection, Good-Turing probabilities were calculated on a
per module and per cancer type basis, by summing the mutation frequen-
cies per cancer type for all genes in each module. Good-Turing probabilities
were visualized on the heatmap shown in the right half of Figure 5.2. Ex-
amining the overarching probability patterns shows red bands (indicative
of higher probabilities) across some cancer types: BLCA, CESC, COAD-
READ, LUAD, LUSC, STAD, and UCEC. The lack of diversity in proba-
bility patterns among modules suggests that Good-Turing probabilities may
be tracking patterns in background mutational rate, or total mutational bur-
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Figure 5.1: Dendrogram illustrating the angular distances between Good-
Turing probabilities of different genes. Modules were determined from the
dendrogram using dynamic hybrid branch pruning approach and varying the
value of the deepSplit (’ds’) parameter from 0 (least sensitive cuts) to 3 (most
sensitive cuts). The color bars at the bottom denotes the module membership
of each gene under the different runs of the pruning approach.

den (TMB), among different cancers. In other words, in many modules,
the Good-Turing probabilities may be simply measuring differences in back-
ground mutation rates between different cancer types.

To determine if modules were tracking patterns in background mutation
rate, I measured the Pearson correlation between each module’s Good-Turing
probabilities and a vector of average mutational burden (i.e., average number
of mutations per tumor) per cancer type and visualized them in a histogram
shown in the left half of Figure 5.2. The left-skewed distribution indicated
that the majority of modules had Good-Turing probabilities that were highly
correlated with patterns in background mutation rates (the peak of the his-
togram is at approximately 0.75). However, there were some modules that
are moderately correlated, weakly correlated, and uncorrelated with patterns
in background mutation rate.
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Figure 5.2: Left: Heatmap of Good-Turing probabilities for modules defined
using hierarchical clustering of the gene-specific probabilities. Red tiles in-
dicate high probabilities while yellow tiles indicate low probabilities. Red
banding illustrates that many Good-Turing probabilities per modules may
be tracking patterns in background mutation rates. Right: Histogram of cor-
relations between Good-Turing probabilities for each module with the vector
of average background mutation rate per tumor. The left-skewed distribution
shows the majority of modules are tracking patterns in background mutation
rate. The bars to the left of the vertical line, colored red, have correlation
< 0.5 with average total mutational burden patterns.

To filter out modules that were highly correlated with average total mu-
tational burden patterns, I used an strict ad hoc correlation threshold of 0.5.
All modules that showed a correlation with average total mutational burden
< 0.5 were designated as sufficiently uncorrelated with background mutation
rates. 245 modules had correlations under the threshold. Next, the 245 mod-
ules below the correlation threshold were subjected to simulations to assess
the cancer type specificity of their unseen variant probabilities.

5.1.3 Assessing cancer type specificity of modules us-
ing simulation

A module is relevant to clinical tasks like primary site classification if its mu-
tation rates vary significantly between cancer types. In this subsection, the
cancer type specificities of the hitherto unseen variant probabilities of mod-
ules are measured using Normalized Mutual Information (NMI) and tested
for significance using a simulation approach.
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Figure 5.3: Left: distribution of null (blue) and 245 observed (red) NMI
values for modules generated using the HCOMPC procedure (uncorrelated
with background mutation rates). The dotted black line indicates the 99th
quantile value on the null distribution. The relative right shift in the red dis-
tribution illustrates that the observed modules are more cancer type specific
than those values generated by random chance. Right: Bubbleplot illustrat-
ing Good-Turing probabilities over different cancer types for modules un-
correlated with average Total Mutational Burden (TMB). Bubbles are sized
according to probability of encountering a hitherto unseen mutation in a
future randomly selected tumor sample of that cancer type.

To test if Good-Turing probabilities calculated per module and cancer
type were significantly cancer type specific, I generated a null distribution
of Normalized Mutual Information (NMI) values under the assumption of
no association between variants and cancer type according to the procedure
described in Methods Subsection 4.4.2. Comparing the observed NMIs for
the 245 modules sufficiently uncorrelated with background mutation rates to
the null distribution of NMI values, I identified that all modules exceeded the
99th quantile of the null NMIs (Right panel of Figure 5.3). Thus, I conclude
with 99% confidence that the observed cancer type specificities in Good-
Turing probabilities were inconsistent with those expected under random
chance.
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5.1.4 Exploring patterns of hitherto unseen variant prob-
abilities

The previous subsection illustrated that the Good-Turing probabilities of
modules constructed using the HCOMPC procedure were significantly can-
cer type specific. This subsection explores the patterns of unseen mutation
probabilities between modules identified by HCOMPC.

Focusing specifically on 245 modules sufficiently uncorrelated with back-
ground mutation rates, I plotted Good-Turing probabilities per module and
per cancer type. I examined the Good-Turing probability values, and selected
15 modules with high NMI values that displayed different cancer type specific
patterns and displayed them in the bubbleplot shown in the right panel of Fig-
ure 5.3. Some clear patterns emerge from this graphic. For instance, “Module
197” (fourth from top) shows a high propensity for encountering hitherto un-
seen mutations in the DLBC cancer type (Large B cell Lymphoma). “Module
491” (second from top) shows a high propensity for producing hitherto un-
seen variants in the UCS cancer type (Uterine Carcinosarcoma). “Module
77” (fourth from bottom) shows a high propensity for generating hitherto
unseen variants in the MESO cancer type (Mesothelioma). And “Module
21” (bottom) shows a high probability of generating hitherto unseen muta-
tions in SKCM cancer type (Skin Cutaneous Melanoma). This statistically
significant variability in hitherto unseen variant probabilities between cancer
types suggests that these modules may encode clinically relevant signals.

5.1.5 Assessing reproducibility of Good-Turing proba-
bility estimates

Probability estimates of encountering hitherto unseen variants must be re-
liable to warrant consideration for important clinical tasks. This subsec-
tion assesses the reproducibility of Good-Turing probability estimates for
HCOMPC-defined modules using a train-test set split.

In an attempt to validate Good-Turing probabilities generated through
the HCOMPC algorithm, I conducted a train-test split procedure as de-
scribed in Subsection 4.2.1. I focused on the top 16 most common can-
cer types (BLCA, BRCA, COADREAD, GBM, HNSC, KIRC, KIRP, LGG,
LIHC, LUAD, LUSC, OV, PRAD, STAD, THCA, UCEC), which accounted
for 7708 tumor samples. I split this dataset into a training dataset of 3854 tu-
mors and a testing dataset of equal size. For the training dataset, I conducted
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the HCOMPC procedure, generating Good-Turing probability estimates for
743 unique modules identified through the HCOMPC procedure (with deep-
Split values ranging between 0 and 3). For the test dataset, I calculated
the observed relative frequency of tumors samples that presented at least
one hitherto unseen mutation (not seen in the training dataset). The con-
cordance between the estimates and observed frequencies of hitherto unseen
variants were illustrated in Figure 5.4. The x-axis denotes the Good-Turing
probability estimates per module calculated per cancer type, while the y-axis
denotes the observed proportions of each cancer type in the test dataset that
presented at least one hitherto unseen variant per module. The 45◦ line in-
dicates perfect prediction, and Lin’s concordance correlation measures how
strongly the data fit the 45◦ line. The Lin’s coefficient of 0.905 indicated
that the observed and estimated probabilities were highly concordant, illus-
trating that the Good-Turing estimates for these HCOMPC-defined modules
are reproducible for cancer types with reasonably large sample sizes.

For large probabilities, there appears to be a slight overestimate of unseen
variant probabilities by the Good-Turing procedure (as evidenced by more
points under the 45◦ line). This bias is also evident in varying degrees ac-
cording to cancer type (particularly for UCEC), which may be due to limited
sample sizes or heterogeneous singleton mutation counts within cancer types.
For a faceted version of the plot with Lin’s correlations calculated per cancer
type, I refer the reader to the Supplementary Figures section, Figure 7.1.

In summary, when the HCOMPC procedure was applied to known can-
cer genes to define modules with similar mutation patterns, these resulting
modules displayed cancer type specific patterns in probabilities of hitherto
unseen variants. Many modules showed Good-Turing probabilities patterns
that merely tracked patterns in background mutation rates, but others only
showed moderate or weak correlations to these prevailing mutation patterns.
Good-Turing probabilities generated using the HCOMPC procedure were sig-
nificantly cancer type specific as assessed by comparison to a null distribution
of Normalized Mutual Information (NMI) values under the assumption of no
variant-cancer type relationship. Additionally, Good-Turing probabilities of
modules defined using HCOMPC were highly reproducible between training
and test datasets for cancer types with reasonably large sample sizes. In
other words, modules of cancer genes defined by HCOMPC contained cancer
type specific signals that may be relevant to cancer classification tasks.
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Figure 5.4: Assessing the concordance between Good-Turing probability es-
timates and observed proportions of unseen mutations for modules defined
using the HCOMPC procedure. The x-axis denotes the estimated Good-
Turing probabilities per module per cancer type in a training dataset of 3854
tumors. The y-axis denotes the observed probabilities of encountering a hith-
erto unseen variant per module per cancer type in a held-out testing dataset
of 3854 tumors. The 45◦ line denotes perfect estimation. The Lin’s Concor-
dance Correlation (Lin’s CC) measures the agreement between the estimated
probabilities and observed proportions. Points are colored based on cancer
type.
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5.2 De-sparsification by pathway membership

based grouping (PMBG)

The goal of the following section is to evaluate the performance of the PMBG
de-sparsification algorithm in producing pathways with significantly cancer
type specific and reproducible unseen variant probability estimates.

5.2.1 Grouping genes into biological pathways

This subsection details the construction of the biological pathways and the
aggregation of mutation data within pathways. Summary statistics detailing
pathway sizes are also provided.

2352 known cancer associated genes were assigned to 2922 known bio-
logical pathways. Mutation data were aggregated by summing the mutation
counts among genes in the same pathway.

Summary statistics for pathways are shown in Table 5.2. Pathways were
eliminated that contained 3 genes or less. PMBG yielded 1915 pathways that
contained more than 3 genes. The median pathway size was 10 genes, and
the maximum size was 332 genes. 523 genes out of the 2352 considered were
not assigned to any pathway and were therefore excluded from analysis.

# pathways Med. path. size Max path. size # unassigned
1915 10 332 523

Table 5.2: Summary statistics for pathways derived from the PMBG proce-
dure. Pathways were were summarized according to the number of pathways,
the median pathway size, the maximum pathway size, and the number of
genes that were not assigned to any pathway.

In short, grouping genes according to pathway membership produced a
large number of pathways that range in size from small (4 genes) to large
(up to 332 genes). The majority of known cancer genes were assigned to
biological pathways.
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5.2.2 Good-Turing probabilities per pathway

This subsection illustrates the results of computed Good-Turing probabilities
per pathway. High level patterns in hitherto unseen variant probabilities are
examined and pathways uncorrelated with background mutation rates are
identified.

Figure 5.5: Left: heatmap of Good-Turing probabilities of 1915 pathways
(rows) over 32 cancer types (columns). The darker/redder a tile is, the higher
the Good-Turing probability in that particular pathway and cancer type.
The dendrogram along the rows is determined by hierarchical clustering of
the mutation profiles according to Euclidean distance. Right: histogram of
correlations between pathway-derived Good-Turing probabilities and total
mutational burden patterns. The left-skew indicates that the majority of
pathways are highly correlated with the total mutational burden pattern.
The vertical line denotes the 0.5 correlation threshold.

Probabilities of observing at least one hitherto unseen variant were calcu-
lated per pathway according to equation 2.11, and visualized in the heatmap
shown in the left panel of Figure 5.5 to examine broader patterns in unseen
mutational probabilities. The heatmap illustrated highly consistent patterns
in hitherto unseen mutation probabilities among the different pathways. In-
deed, the cancer types BLCA, CESC, COADREAD, LUAD, LUSC, STAD,
and UCEC consistently show higher unseen variant probabilities than the
other cancer types. These cancer types also typically have the highest fre-
quencies of mutation. The consistent behavior of Good-Turing probabilities
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in pathways suggests that the pathways may be tracking patterns in back-
ground mutation rate.

To confirm whether pathways were tracking patterns in background mu-
tation rates, I measured the Pearson correlations between each pathway’s
Good-Turing probabilities and a vector of the average total mutational bur-
den per tumor across the 32 tumor types. A histogram of the correlations
is shown in the right panel of Figure 5.5. The left-skewed distribution con-
firmed that the vast majority of pathways show Good-Turing probabilities
highly correlated to patterns of background mutation rate. However, not all
pathways were highly correlated with background mutation rate. Using an
ad hoc correlation cutoff of 0.5, I identified 80 pathways that were sufficiently
uncorrelated with background mutation rates. In the following subsection,
the cancer-type specificity of the 80 pathways were tested for statistical sig-
nificance.

5.2.3 Assessing cancer type specificity of pathways ob-
tained using PMBG procedure

This subsection details how the cancer-type-specificity of Good-Turing prob-
abilities were tested for statistical significance using simulation.

To measure the statistical significance of the cancer type specificities
observed in the Good-Turing probabilities per pathway, I generated a null
distribution of Normalized Mutual Information (NMI) values under the as-
sumption of no association between variants and cancer type according to
the procedure described in Methods Subsection 4.4.2. I summarized the dis-
tribution of null NMIs along with the observed NMIs calculated from the
un-permuted data in a relative frequency histogram shown in the right panel
of Figure 5.6. The dotted black line represents the 99th quantile of the null
distribution of NMIs. All 80 pathways sufficiently uncorrelated with back-
ground mutation rate patterns exceeded this 99th quantile cutoff. Thus, I
conclude with 99% confidence, that the observed cancer-type-specificities in
Good-Turing probabilities were statistically significant for the 80 pathways.

In short, all 80 pathways (sufficiently uncorrelated with background mu-
tation rates) had cancer type specific unseen variant signals that were incom-
patible with a null model of no association between variants and cancer type.
Thus, the differences in unseen variant probabilities between cancer types is
statistically significant for the 80 pathways surveyed.
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Figure 5.6: Left: distribution of null (blue) and 80 observed (red) NMI
values for pathways produced by the PMBG procedure (uncorrelated with
background mutation rates). The dotted black line indicates the 99th quan-
tile value on the null distribution. The right shift in the red distribution
illustrates that the observed pathways are more cancer type specific than
those values generated by random chance. Right: Bubbleplot illustrating
Good-Turing probabilities over different cancer types for 15 select pathways
uncorrelated with average Total Mutational Burden (TMB). Bubbles are
sized according to probability of encountering a hitherto unseen mutation in
a future randomly selected tumor sample of that cancer type.

5.2.4 Exploring patterns of hitherto unseen variant prob-
abilities in pathways

The previous subsection illustrated that the Good-Turing probabilities of
pathways identified using the PMBG procedure were significantly cancer-
type-specific. This subsection explores the patterns of unseen mutation prob-
abilities between pathways identified by PMBG.

Focusing specifically on 80 pathways sufficiently uncorrelated with back-
ground mutation rates, I plotted Good-Turing probabilities per pathway and
per cancer type. I examined the Good-Turing probability values, and se-
lected 15 pathways that displayed different cancer type specific patterns and
displayed them in the bubbleplot shown in the right panel of Figure 5.6.

The bubbleplot illustrates some interesting patterns. For instance, “TERT
PATHWAY” (bottom) refers to the pathway containing the hTERT gene
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which encodes the enzyme telomerase. Telomerase is found to be activated
in 80-90% of cancers and can contribute to cancer immortality by repairing
frayed ends of chromosomes. The TERT pathway shows high probabilities of
generating hitherto unseen mutations in DLBC (B-cell Lymphoma), ESCA
(Esophageal Carcinoma), KICH (Kidney Chromophobe), LUSC (Lung Squa-
mous Cell Carcinoma), and especially UCS (Uterine Carcinosarcoma). The
“IMATINIB AND CHRONIC MYELOID LEUKEMIA” pathway (third from
bottom) is associated with disregulation and oncogenesis of the myeloid (B-
cell) lineage (and potential evasion of the immune checkpoint inhibitor ima-
tinib). As one might expect, the Imatinib and Chronic Myeloid Leukemia
pathway shows a high and specific probability of generating hitherto unseen
mutations in DLBC (B-cell Lymphoma) cancers. In this case, the biology
of the pathway matches the cancer type specificity observed in the hith-
erto unseen variant probabilities, as a pathway with known disregulation in
myeloid cancers shows mutation probabilities specific to a myeloid cancer.
The “RHOBTB3 GTPASE CYCLE” (top) and “RHOBTB3 ATPASE CY-
CLE” (second from top) involves a Ras-like protein and all the downstream
targets that it phosphorylates. RHOBTB3 has been hypothesized as a tu-
mor suppressor, as its expression is downregulated in many cancers, including
renal carcinomas in humans. The RHOBTB3 GTPase/ATPase Cycle path-
ways show cancer-type-specificity in unseen variant probabilities for KIRC
(Kidney Renal Cell Carcinoma).

5.2.5 Assessing reproducibility of Good-Turing proba-
bilities for pathways

Probability estimates of encountering hitherto unseen variants must be reli-
able to warrant consideration for important clinical tasks. This subsection
assesses the reproducibility of Good-Turing probability estimates generated
by PMBG-derived pathways using a train-test set split.

To validate the signals produced by this approach, I conducted a 50-50
train-test split of tumors from the 16 most common cancer types according
to the procedure described in Methods Subsection 4.2.1. For the training
dataset, I conducted the PMBG procedure, de-sparsified the somatic mu-
tation data according to pathway membership, and calculated Good-Turing
probabilities per pathway and cancer type according to the procedure de-
scribed in Methods subsubsection 4.3.2. Then for the test dataset, I calcu-
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Figure 5.7: Assessing the concordance between Good-Turing probability es-
timates and observed proportions of unseen mutations for pathways defined
using PMBG. The x-axis denotes the estimated Good-Turing probabilities
per pathway per cancer type in a training dataset of 3854 tumors. The y-axis
denotes the observed proportions of tumors that generated a hitherto unseen
mutation in each pathway in a held-out testing dataset of 3854 tumors. The
45◦ line denotes perfect concordance between estimated probabilities and ob-
served proportions. The Lin’s Concordance Correlation (Lin’s CC) measures
the agreement between the estimated and observed probabilities. Points are
colored based on cancer type.
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lated the observed proportions of tumor samples of each cancer type that
produced at least one hitherto unseen variant. I visualized the concordance
between the estimated and observed probabilities of hitherto unseen vari-
ants in Figure 5.7, and used the Lin’s Concordance Correlation to quantify
how well the observed probabilities were reproduced by the Good-Turing es-
timates. The high Lin’s Concordance Correlation (0.951) suggests that the
estimates reproduce the true probabilities quite well. However, there is a
consistent bias towards overestimating large probabilities (with some cancer
types showing more bias than others). For a faceted version of the plot with
Lin’s correlations calculated per cancer type, I refer the reader to Supple-
mentary Figure 7.2.

In summary, probabilities of encountering at least one hitherto unseen
mutations in known pathways defined using the PMBG procedure mostly
track patterns in background mutation rate between tumors. However, there
are some pathways with mutational patterns sufficiently uncorrelated with
background mutation. These pathways display mutation patterns with evi-
dent and statistically significant cancer type-specific signals. A train-test set
split experiment showed that these unseen variant probabilities are highly
reproducible among cancer types with reasonably large sample sizes. These
results indicate that Good-Turing probabilities for known biological pathways
could be relevant to certain clinical tasks.
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Chapter 6

Conclusions and Future Work

In summary, HCOMPC (a higher variance method that clustering genes ac-
cording to their mutation probability patterns and estimates Good-Turing
probabilities for the resulting modules) and PMBG (a higher bias method
that groups genes and estimates hitherto unseen variant probabilities within
known biological pathways) both mostly produce gene groups that track
patterns in background mutation rates. However, some gene groups defined
using HCOMPC and PMBG are uncorrelated with background mutation rate
patterns and are significantly cancer type specific. Good-Turing probabilities
produced from these two approaches are highly reproducible, per a train-test
set split experiment.

This section includes the main conclusions of this thesis, limitations, and
possible future directions with this project.

6.1 Conclusions

Somatic variant mutation data is dominated by rare variants. In the TCGA
dataset, more than 90% of mutations were observed only once across the
more than 10,000 tumor samples in the dataset. This finding illustrates
that the preponderance of mutations in human cancer are rare, and future
sequenced tumor samples are bound to contain mutations that haven’t yet
been observed in the existing cohort of sequenced tumor genomes. Rather
than discarding novel variants for which we have no prior information, using
statistical methods to estimate the mutational richness of different cancer
types can help extract clinically-relevant signals from these previously ne-
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glected mutational data.
Previous analysis of cancer genomes using mutation richness estimators

like smoothed Good-Turing frequency estimation were restricted to genes
commonly mutated in human cancer, which represented only a small cross-
section (approximately 2.5%) of the cancer exome (Chakraborty, Arora, Begg
& Shen 2019b). The exclusive focus on commonly mutated genes was due to
the sparsity of somatic mutation data; the vast majority of genes were too
sparsely mutated to reliably estimate hitherto unseen variant probabilities.

This thesis sought to expand the scope of cancer-specific analyses of mu-
tation richness by exploring methods for de-sparsifying the somatic muta-
tion data in a statistically and biologically principled manner. Two de-
sparsification methods were proposed:

1. HCOMPC: a “lower bias-higher variance” method that learned modules
of genes with similar mutation probability patterns using hierarchical
clustering and a dynamic branch pruning method.

2. PBMG: a “higher bias-lower variance” method that estimated hitherto
unseen variant probabilities for a set of predefined pathways, including
pathways with known roles in canonical and cancer related processes.

To control for mutational noise (i.e., passenger mutations that don’t show
reliable cancer type specific patterns), I restricted my analysis to a set of 2352
known cancer-related genes (i.e., genes with known roles to cancer or genes
with functional connections to such genes) (Kuijjer et al. 2018). I applied
both de-sparsification approaches to the somatic mutation data for these 2352
genes. Both approaches produced many gene groups with Good-Turing prob-
abilities that merely tracked patterns in background mutation rate. While
background mutation rate is a cancer type specific feature relevant to cancer-
classification, it represents a high level signal that doesn’t require a mutation
richness analysis to detect. These gene groups were not of great interest.

HCOMPC and PMBG (to a somewhat lesser extent) identified several
gene groups with Good-Turing probabilities that were sufficiently uncorre-
lated with patterns in background mutation rates. Using Normalized Mutual
Information and a null simulation approach, I showed that the cancer-type-
specificities of hitherto unseen variant probabilities were statistically signifi-
cant for both gene groups generated by HCOMPC and PMBG.

A 50-50 train-test split of tumor samples for the 16 most common cancer
types was performed, and the reproducibility of the Good-Turing probabili-
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ties were assessed by comparing the probabilities estimated from the training
set to the probabilities observed in the test set. In general, high Lin’s Con-
cordance Correlations illustrated that for cancer types with reasonably large
sample sizes, the Good-Turing probabilities were highly reproducible between
the train and test data.

In summary, significant and reproducible cancer type-specific signals for
some gene groups were obtained using both the HCOMPC and PMBG ap-
proaches. These approaches represent an effort to expand the application
of statistical estimators of “mutation richness” to a broader cross-section
of the cancer genome in statistically and biologically principled manners.
HCOMPC and PMBG also defined broader genomic features with clinically-
relevant patterns in hitherto unseen mutation frequencies. HCOMPC and
PMBG may offer benefits such as improving the precision of hitherto unseen
variant estimation from sparse data, and reducing dimension and data spar-
sity to facilitate the development of machine learning classifiers of human
cancers.

Ultimately, this thesis offers novel methods to potentially expand the
application of statistical estimators of “mutation richness” to a broader cross-
section of the cancer genome in statistically and biologically principled ways.
Continued research in this area will further unlock the “hidden genome”
of rare and hitherto unseen variation, which could have important clinical
implications.

6.2 Limitations

One major limitation of this research is the unbalanced nature of the dataset,
as many cancer types had a small number of samples. Precisely estimating
unseen variant probabilities is directly dependent on how well one can esti-
mate the number of singleton variants (N1) per tumor. Larger sample sizes
would indeed help estimate these quantities more accurately. The generation,
standardization, and dissemination of more larger cancer genomics datasets
will help improve the quality of the estimates and aid efforts at mining mu-
tation data for clinically-relevant signals.

This thesis only considered tumors of certain mutation signatures (Non-
hypermutated, APOBEC (2,13), Smoking (4), and MMR (6,15,20,25) signa-
tures) and certain cancer types (32 were considered). These cancers repre-
sented relatively broad cancer types with low to moderate mutational bur-
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dens, as I wanted to avoid cancer signatures like POLE (10), which are known
for catastrophic hypermutation events that make Good-Turing estimation
unreliable (Chakraborty, Arora, Begg & Shen 2019a). Furthermore, my val-
idation analyses were restricted to the 16 most common cancer types. Thus,
the results reported in this thesis are not readily generalizable to many cancer
types or different mutation signatures not included in the TCGA dataset.

Another important limitation of this research is that tumor heterogeneity
is not fully explained by cancer type alone. While cancers may share tissues of
origin or broad histological features, there are latent characteristics of tumors
which have direct influence on cancer biology, disease outcome, and response
to different treatments. Characterizing cancers in greater detail using other
omics data types (e.g., single-cell methods), imaging data, and biomarkers,
and integrating the data in principled ways will yield more comprehensive and
accurate portraits of individual cancers. There is an entire field of research
focused on cancer subtype discovery aimed at addressing these questions.
The complexity of cancer cannot be emphasized enough; no two cancers are
alike, and even individual cancers are composed of heterogeneous populations
of cells. It is important to note that this thesis examined cancers on the basis
of cancer type, a useful but reductionist perspective of cancer biology.

One other limitation of this work concerns the biological prior information
used in the de-sparsification approaches. Conventional scientific knowledge
posits that the majority of mutated cancer genes are “passenger events”,
that are akin to mutational noise. In other words, the majority of mutations
don’t play an active role in driving the cancerous phenotype. Feature screen-
ing/selection is critical in distinguishing genes with cancer-type specific mu-
tational signals from the background mutational noise. This thesis addressed
this problem by focusing on a list of over 2000 known cancer-associated genes
compiled by COSMIC (Tate et al. 2019) and Östlund et al. (2009). However,
focusing only on genes with known links to cancer probably did not capture
all the genes truly relevant to carcinogenesis in the TCGA dataset. Moreover,
the PMBG approach relied on grouping genes according to known biological
pathways and other biologically defined pathways. Even though many differ-
ent pathways were considered, they likely are an underfit model of the true
molecular circuits underlying cancer initiation and progression. Increased
sample sizes of cancer genomics datasets will enable scientists to distinguish
rare cancer driver genes from background noise, and improved knowledge of
cancer genetics improve characterization of cancer-relevant pathways.
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6.3 Future Work

There are a variety of potential future research opportunities related to this
project. One important question involves how to integrate hitherto unseen
variants into machine learning classifiers of cancer type. Work like that of
Chakraborty et al. (2020) use a “meta-regression” step, which uses the infor-
mation in previously observed variants to estimate the logistic regression co-
efficients associated with hitherto unseen variants. Essentially, the approach
imputes the predictive effect of hitherto unseen variants using observed vari-
ants. While the meta-regression step incorporates information from hitherto
unseen variants, it does not directly incorporate Good-Turing probabilities.

To directly incorporate Good-Turing probabilities into the machine learn-
ing scheme, I propose a relatively straightforward Naive-Bayes classification
algorithm. Naive Bayes are simple probabilistic classifiers that assign objects
to classes by maximizing the posterior likelihood associated with each class.
In the context of this thesis, Naive Bayes can convert mutation probabil-
ities (previously observed or hitherto unseen) across different cancer types
into probabilities of cancer classes given the occurrence of mutational events.
Future efforts that harness of the “hidden genome” of previously unseen
variation could facilitate important clinical tasks like cancer primary site
prediction.

Another future direction is finding ways to adjust Good-Turing probabil-
ities for background mutation rates. The majority of gene groups produced
using HCOMPC and PMBG methods merely tracked patterns in background
mutation rates, which limits the clinical utilities of these approaches. I was
unable to identify adjustments to the Good-Turing formula that account for
background event rates, so this line of research may require the development
of novel statistical methods1.

Another possible extension of this thesis is considering other possible cri-
teria for grouping genes. One possible method for grouping genes could be
gene-specific variables termed “metafeatures” that were shown by Lawrence
et al. (2013) to influence somatic mutation rate. Metafeatures include the
gene’s average expression level, GC content, replication time, non-coding
mutation rate, and presence in an open/closed chromosomal compartment.
Clustering genes according to relevant features may help identify gene groups

1I considered an alternative Good-Turing formula, which while controlling for back-
ground mutation rate, generated signals that were likely artifacts. See Section 7.4 for
more.
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with clinically-relevant rare variant signals. Another potential grouping crite-
rion to guide variant aggregation are networks. Networks are higher variance
criteria than pathways, and they illustrate relationships among genes or pro-
teins as edges drawn between nodes on a network diagram. Network methods
have proven extremely valuable to cancer research in a variety of manners:
identified gene modules implicated in cancer (Leiserson et al. 2015), as a
somatic variant mutation de-sparsifying strategy (Hofree et al. 2013), and
in classifying breast cancer metastases (Chuang et al. 2007). The potential
utility of networks in defining groups of genes that share rare variant signals
is a worthy task with potentially useful clinical implications.
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Chapter 7

Supplementary materials

This chapter contains supplementary figures, derivations of the Good-Turing
formula, and additional analyses using alternative grouping criteria and Good-
Turing formula.

7.1 Supplementary Figures
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Figure 7.1: Concordance between Good-Turing probabilities for modules de-
fined using HCOMPC procedure on training dataset compared to the ob-
served proportions of hitherto unseen variants in a test dataset, faceted by
cancer type. The 45◦ line denotes perfect prediction of probabilities. Lin’s
Concordance Correlations, which measures the strength of correlation along
the 45◦ line, per cancer type are shown in each panel.
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Figure 7.2: Concordance between Good-Turing probabilities for modules de-
fined using HCOMPC procedure on training dataset compared to the ob-
served proportions of hitherto unseen variants in a test dataset, faceted by
cancer type. The 45◦ line denotes perfect prediction of probabilities. Lin’s
Concordance Correlations, which measures the strength of correlation along
the 45◦ line, per cancer type are shown in each panel.
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7.2 Applying PMBG with non-pathway gene

sets

The PMBG de-sparsification strategy considered mutations aggregated/summed
within known biological pathways. Biological pathways are considered the
“gold standards” of biomolecular interactions. However, our knowledge of
biological pathways likely underfits the true extent of gene-gene and protein-
protein interactions occurring within cells. In an effort to capture interactions
not included in canonical pathway annotations, I explore the possibility of
running the PMBG de-sparsification algorithm on alternative gene sets.

7.2.1 Method

Identical to the procedure outlined in the Methods chapter, 2352 cancer-
associated genes from the Catalogue of Somatic Mutations in Cancer (COS-
MIC) (Tate et al. 2019) and Supplemental Table 3 from Östlund et al. (2009)
were considered for grouping.

Gene set files containing pathways were acquired from MSigDb (Subra-
manian et al. 2005) in .gmt format 1. The following 5 gene set files were
used as criteria for grouping genes, listed roughly in order of decreasing
bias/increasing variance:

1. Positional criteria (“c1.all.v7.3.symbols.gmt”): contains 299 positional
gene sets, where genes are grouped according to chromosome and cyto-
genic band (regions of the chromosome with actively expressed DNA;
often appear different under karyotypic staining).

2. Computational Gene Set criteria (“c4.all.v7.3.symbols.gmt”): contains
858 gene sets obtained by previous computational mining of cancer mi-
croarray data. These gene sets include gene neighborhoods surrounding
380 cancer-related genes and cancer modules significantly implicated in
a variety of cancer outcomes.

3. Ontology Gene Set criteria (“c5.all.v7.3.symbols.gmt”): contains 14,996
gene sets where genes are annotated according to their gene ontology

1.gmt format refers to gene matrix transposed format, often used to describe gene
groups.
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(GO) terms, i.e., to which biological processes, cellular components,
and molecular functions to genes belong to.

4. Oncogenic Signature Gene Set criteria (“c6.all.v7.3.symbols.gmt”): con-
tains 189 oncogenic signature gene sets, representing cellular pathways
which are often dis-regulated in cancer. The majority were generated
directly from microarray data or from MSigDb’s unpublished profiling
experiments involving perturbation of known cancer genes.

5. Cell Type Signature Gene Set criteria (“c8.all.v7.3.symbols.gmt”): con-
tains 673 gene sets that contain curated cluster markers for cell types
identified in single-cell sequencing studies of human tissue. The gene
sets in this collection contain cell types from Heart, GI Tract, Pancreas,
Kidney, Liver, the Immune system, Retina, Olfactory tissue, and the
Brain.

The gene set file were converted to binary adjacency matrices A where
Ai,j = 1 indicates the presence of Gene j in Pathway i using the SAMBAR
R package (Kuijjer 2021).

Gene sets were eliminated that contained 3 or fewer genes. Mutation
counts were aggregated/summed within gene sets per cancer type. Then
Good-Turing probabilities were calculated per gene set and per cancer type
according to the procedure outlined in Section 4.2. The procedure outlined
above treats gene sets as the genomic units of interest.

7.2.2 Grouping genes into gene sets

Summary statistics for gene sets produced using the different grouping cri-
teria are shown in Table 7.1. The Positional dataset, which groups genes
according to chromosome and cytogenic band, produced 183 gene sets with
more than 3 genes. The gene set sizes ranged from 4 to 71 genes. The
Computational dataset, which groups genes according to groups identified
by computational mining of cancer microarray data, produced an intermedi-
ate number of pathways (715) that varied in size between 4 and 151 genes.
The Gene Ontology dataset, which groups genes according to their GO terms
(involvement in biological processes, cellular components, or molecular func-
tions), produced 7965 gene sets that varied in size between 4 and 495 genes.
The Oncogenic Signature dataset, where groupings are defined based on mi-
croarray data and perturbation experiments of known cancer genes, produced

68



189 gene sets, ranging from 4 genes to 57 genes in size. The Cell Type Spe-
cific dataset, where groupings are markers for various cell types derived from
scRNA-seq produced 543 gene sets that varied in size from 4 to 335 genes.

Group. criteria # groups Min group
size

Med group
size

Max group
size

Positional 183 4 8 71
Computational 715 4 17 151
Gene Ontology 7965 4 12 495
Onco. Sig. 189 4 22 57
Cell Type Sig. 543 4 20 335

Table 7.1: Summary statistics for gene sets derived from the PMBG proce-
dure. Pathways were broken into groups according to their parent datasets:
Positional, Computational, Gene Ontology, Oncogenic Signature, and Cell
Type Signature.
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7.2.3 Good-Turing probabilities per gene set

Probabilities of observing at least one hitherto unseen variant in a future
randomly selected tumor sample were calculated per gene set and per cancer
type according to equation 2.11 and visualized in the heatmaps shown in Fig-
ure 7.3 to examine broader patterns in unseen mutational probabilities. The
heatmap illustrates highly consistent patterns in hitherto unseen mutation
probabilities among the different gene sets. The cancer types BLCA, CESC,
COADREAD, LUAD, LUSC, STAD, and UCEC consistently show higher
probabilities than the other cancer types and typically have the highest fre-
quencies of mutation. The consistent patterns in Good-Turing probabilities
suggests that the gene sets may be tracking patterns in background mutation
rate or total mutational burden (TMB).

(a) Positional (b) Computational (c) Gene Ontology

(d) Oncogenic Signature (e) Cell Type Signature

Figure 7.3: Heatmaps of Good-Turing probabilities per gene set per cancer
type for each gene grouping criteria. Columns represent cancer types and
rows represent gene sets. Darker tiles indicate higher Good-Turing probabil-
ities.
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(a) Positional (b) Computational (c) Gene Ontology

(d) Oncogenic Signature (e) Cell Type Signature

Figure 7.4: Histograms illustrating the distribution of correlations among
gene sets defined via (a) positional, (b) computational, (c) gene ontology, (d)
oncogenic signature, and (e) cell type signature criteria. The vertical black
line denotes the Pearson correlation cutoff of 0.5. Bars to the left of that
cutoff are colored red.

To confirm if gene sets were tracking patterns in background mutation
rate, I measured the Pearson correlations between each gene set’s Good-
Turing probabilities and a vector of the average total mutational burden
per tumor across the 32 tumor types. Histograms of the correlations values
per grouping criterion is shown in Figure 7.4. The left-skewed distributions
confirmed that the vast majority of gene sets show Good-Turing probabilities
highly correlated to patterns of background mutation rate. A few gene sets
achieved correlations under the ad hoc cutoff of 0.5: 1 gene set for positional,
2 for computational, 140 for gene ontology, 1 for oncogenic signature, 2 for
cell type signature. In all, 146 gene sets cleared this threshold.
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7.2.4 Assessing cancer type specificity of hitherto un-
seen variant probabilities of gene sets

(a) Positional (b) Computational (c) Gene Ontology

(d) Oncogenic Signature (e) Cell Type Signature

Figure 7.5: Distributions of null (blue) and observed (red) NMI values for
gene sets (uncorrelated with background mutation rates). The dotted black
line indicates the 99th quantile value on the null distribution. The right shift
in the red distribution illustrates that the observed gene sets are more cancer
type specific than those values generated by random chance.

To assess the statistical significance of the cancer type specificities ob-
served in the Good-Turing probabilities per gene set, I generated a null
distribution of Normalized Mutual Information (NMI) values under the as-
sumption of no association between variants and cancer type according to
the procedure described in Methods Subsection 4.4.2. I summarized the dis-
tribution of null NMIs along with the observed NMIs calculated from the
un-permuted data in a relative frequency histograms shown in Figure 7.5.
The dotted black line represents the 99th quantile of the null distribution
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of NMIs. All 146 pathways sufficiently uncorrelated with background muta-
tion rate patterns exceeded this 99th quantile cutoff. Thus, I conclude with
99% confidence, that the observed cancer-type-specificities in Good-Turing
probabilities were statistically significant for the 146 pathways.

7.2.5 Exploring patterns of hitherto unseen variant prob-
abilities

Examining the patterns of hitherto unseen variant probabilities in the gene
sets sufficiently uncorrelated with background mutation rates yielded some
intriguing findings. Shown in Figure 7.6 are a select group of gene sets pro-
duced by the positional, computational, gene ontology, oncogenic signature,
and cell type signature grouping criteria.

The the single positional gene set uncorrelated with background muta-
tion rates (“chr6p25”, bottom), the two computational gene sets (“MORF
MYST2” and “MORF PDPK1”, second and third from bottom), several
gene ontology gene sets (“Regulation of brown fat cell differentiation” and
“Ribosomal small subunit binding” shown), the single oncogenic signature
gene set (“IL.2.UP.V1.UP”, third from top), and the cell type signature gene
sets (“Durante adult olfactory neuroepithelium olfactory horizontal basal
cells” and “Travaglini lung Natural Killer T cell”, top two) all produced
hitherto unseen variant probability patterns with high signal in DLBC (B
cell Lymphoma). Two gene ontology gene sets (“Negative regulation of
transcription from RNA Polymerase II Promoter in response to stress” and
“Ubiquitin Ligase Substrate Adaptor Activity”) showed increased hitherto
unseen variant probabilities in the KIRC cancer type (Kidney Renal Clear
Cell Carcinoma). The GO Ontology gene set “Abnormal pupillary function”
shows higher Good-Turing probabilities in BLCA (Bladder Urothelial Car-
cinoma), CHOL (Cholangiocarcinoma), MESO (Mesothelioma), and UVM
(Uveal Melanoma).

7.3 Deriving Good-Turing estimator using bi-

nomial likelihoods

The following derivation of the Good-Turing estimator is borrowed from
Chakraborty, Arora, Begg & Shen (2019a).
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Figure 7.6: Probabilities of observing at least one hitherto unseen mutation
in a select group of gene sets per cancer type. Bubbles are sized according
to Good-Turing probabilities.
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Let qj denote the probability of encountering the j-th variant in a ran-
domly selected tumor and rj be the number of times that variant appears
in the existing sample of m tumors. Let N be the total number of vari-
ants. Then r ∼ Binomial(m, qj), and assuming independence between the
observations, we obtain a product binomial likelihood model :

L(q1, q2, . . .) =
N∏
j=1

(
m

rj

)
q
rj
j (1− qj)m−rj (7.1)

Let Nr denote the number of variants appearing exactly r times in the
sample of m tumors.

Let the qj’s be a priori independent with a common prior distribution F
on [0,1]. Under a non-parametric prior F , the posterior mean of qj conditional
on rj = r is given by:

E(qj, rj = r) =

∫ 1

0
q
(
m
r

)
qr(1− q)m−rdF (q)∫ 1

0

(
m
r

)
qr(1− q)m−rdF (q)

(7.2)

Using the identity

q

(
m

r

)
qr(1− q)m−r =

r + 1

m+ 1

(
m+ 1

r + 1

)
qr+1(1− q)(m+1)−(r+1) (7.3)

in the posterior mean formula above, we obtain:

E(qj, rj = r) =
r + 1

m+ 1

∫ 1

0

(
m+1
r+1

)
qr+1(1− q)(m+1)−(r+1)dF (q)∫ 1

0

(
m
r

)
qr(1− q)m−rdF (q)

=
r + 1

m+ 1

pm+1(r + 1)

pm(r)

(7.4)

Where pm(r) denotes the marginal probability of a variant frequency equal
to r.

In the original Good-Turing estimation, pm+1(r+1)
pm(r)

is estimated by the ratio

of the empirical frequencies Nr+1

Nr
. However, the estimates are often unstable

as Nr’s for different values can be 0, making the estimation of E(qj, rj = r)
problematic. To overcome this, smoothing of raw Nr values is necessary.
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Once the Nr values are smoothed (S(Nr)), we replace pm+1(r+1)
pm(r)

with
S(Nr+1)
S(Nr)

, yielding the Good-Turing estimate:

PGT (r) = q̂GT =
r + 1

m+ 1

S(Nr+1)

S(Nr)
(7.5)

We have derived the Good-Turing formula, that estimates the probability
of encountering at least one hitherto unseen mutation in a future randomly
selected tumor sample!

7.4 Can estimating probabilities of encoun-

tering a single hitherto unseen variant

decouple Good-Turing probabilities and

background mutation rate patterns?

Note that all Good-Turing probabilities presented in this section correspond
to the probability of encountering a particular hitherto unseen mutation,
according to the following equation:

PGT =
1

m+ 1

N̂0

N1

(7.6)

Where m is the number of tumor samples, N1 is the number of singleton
mutations, and N̂0 is the Chao estimate of the number of unseen species in
a population Chao (1987).

Probabilities of observing one particular hitherto unseen variant were cal-
culated per pathway according to equation 7.6, and visualized in the heatmap
shown in the right panel of Figure 7.7 to examine overarching patterns in
probabilities of encountering a particular hitherto unseen mutation. Unlike
in Figures 5.5 and 5.2, this heatmap doesn’t display consistent probabilities
within particular cancer types. While many pathways have high probabilities
in CHOL (Cholangiocarcinoma), there is appreciably more variation among
pathways and among cancer types than previously observed. In other words,
it appears that the majority of pathways show unseen variant probability
estimates uncorrelated with patterns in background mutation rates. This
is confirmed by a histogram of the correlations between Good-Turing prob-
abilities and Total Mutational Burden vector (shown in the right panel of
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Figure 7.7). Unlike in Figures 5.5 and 5.2, where the vast majority of path-
ways displayed Good-Turing probabilities that were highly correlated with
background mutation rate. All probabilities in Figure 7.7 are uncorrelated
to weakly negatively correlated with background mutation rate.

Figure 7.7: Left: correlations between unseen variant probabilities and aver-
age Total Mutational Burden (TMB) vector show weak negative correlation
among preponderance of pathways. Right: heatmap of probabilities of en-
countering one particular hitherto unseen variant across 32 different cancer
types across various pathways.

To evaluate the significance of the cancer type specific patterns in hith-
erto unseen variant probabilities for each pathway, I conducted a permutation
test on the normalized mutual information (NMI) as outlined in the methods
section. I repeated this procedure 1000 times and summarized the null NMIs
along with the observed NMIs in a relative frequency histogram shown in
the left panel of Figure 7.8. The dotted black line represents the 99th quan-
tile of the null distribution of NMIs; thus with more than 99% confidence,
NMIs greater than the black line show more cancer-type-specific patterns
of hitherto unseen variant probabilities than would be expected by random
chance.

There is a small right shift in the distribution of observed NMI values
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Figure 7.8: Left: Null reference distribution of NMIs (blue) compared to the
observed NMIs (red) for probabilities of observing a particular previously
unseen variant in known pathways. The dotted black line indicates the 99th
quantile cutoff of the null distribution of NMI values. Right: bubbleplot
illustrating probabilities of encountering a particular previously unseen mu-
tation across different pathways and cancer types. This plot illustrates the
10 pathways with the highest NMIs. Bubbles are sized and colored according
to their Good-Turing probabilities.

(red) relative to the null reference distribution (blue), suggesting that the
observed pathways are more cancer type specific than would be expected
by random chance. Using the 99th quantile as a significance cutoff, 150
pathways were deemed significantly cancer type specific. These pathways
were subjected to further exploratory analysis.

To illustrate the patterns of mutation probabilities, I visualized proba-
bilities of encountering a particular previously unseen mutant in the bub-
bleplot shown in the right panel of Figure 7.8. Plotted are the 10 path-
ways with the highest NMI values observed. There is some evident vari-
ability in the unseen variant probabilities between pathways. For instance,
the “BIOCARTA CCR3 PATHWAY” (bottom) shows a high affinity for the
CHOL (Cholangiocarcinoma) cancer type in its Good-Turing probabilities.
The “BIOCARTA NDKDYNAMIN PATHWAY” (third from bottom) shows
high affinity for CHOL and DLBC (B-cell lymphoma). The “BIOCARTA SET PATHWAY”
(fourth from bottom) shows high affinity for the UCS (Uterine Carcinosar-
coma) and ACC (Adrenocortical carinoma).

It gives me pause that the highest probabilities of encountering a partic-
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ular previously unseen mutation are found in cancer types with few samples.
As shown in Table 4.1, CHOL(m = 34), DLBC (m = 37), UCS (m = 49),
and ACC (m = 92) (cancer types with high Good-Turing probabilities Fig-
ure 7.8) all represent cancer types with fewer than 100 samples. Perhaps
these cancer type-specific signals are artifacts of the unbalanced nature of
the dataset.

In summary, considering probabilities of encountering one particular pre-
viously unseen mutation resolves the problem of Good-Turing probabilities
tracking background mutation rates, as evidenced by the de-coupling of path-
way mutation probabilities with average mutational burden seen in Figure
7.7. However, the cancer type-specificity of these unseen variant probability
patterns are weaker than in the “least one probability” case and are likely
artifacts of the unbalanced nature of the dataset. What’s more, considering
a particular hitherto unseen mutation suffers from lack of interpretability,
as identifying a particular mutation you haven’t encountered before appears
counterintuitive. Improved methods to adjust for background mutation rates
warrant investigation.
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