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Abstract

Figure 1: Correlation is not causation! (source: https://xkcd.com/552/)

Statisticians and students worldwide feverishly chant the phrase “correla-
tion is not causation”. While accurate, the blanket statement disproportion-
ately focuses statisticians’ attention on correlation while dismissing possible
causal mechanisms. In my thesis, I discuss recent research detailing the use
of propensity scores as a covariate balancing technique for causal inference.
More specifically, I outline logistic regression and various supervised ma-
chine learning techniques including CART, ensemble CART methods, and
neural networks as methods for propensity score estimation. Then, I sim-
ulate a causal relationship within a data set and apply each technique to
assess which estimation technique is most effective at uncovering the causal
relationship. Does the effectiveness of the estimation technique depend on
the size of the causal effect? What about the sample size? What about a
misspecified model? I will explore these questions.



Contents

1 Introduction to Propensity Scores 1
1.1 Correlation vs. Causation . . . . . . . . . . . . . . . . . . . . 1
1.2 Notation and Average Treatment Effect . . . . . . . . . . . . . 2
1.3 Balancing Score . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Propensity Score Definition . . . . . . . . . . . . . . . 4
1.4 Propensity Score Stratification . . . . . . . . . . . . . . . . . . 5
1.5 Evaluating the Propensity Score Usefulness . . . . . . . . . . . 6

1.5.1 Bias Reduction . . . . . . . . . . . . . . . . . . . . . . 6
1.5.2 Pre-treatment Covariate Hypothesis Testing . . . . . . 7
1.5.3 Checking for Covariate Balance After Stratification Ex-

ample . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Estimating the Average Treatment Effect . . . . . . . . . . . . 13

2 Logistic Regression for Propensity Score Estimation 15
2.1 Generalized Linear Models . . . . . . . . . . . . . . . . . . . . 15
2.2 Logistic Regression Theory . . . . . . . . . . . . . . . . . . . . 16

2.2.1 First, Some Notation . . . . . . . . . . . . . . . . . . . 16
2.2.2 Logistic Regression as a GLM . . . . . . . . . . . . . . 16

2.3 Pros and Cons of Logistic Regression . . . . . . . . . . . . . . 20

3 Tree-based methods for Propensity Score Estimation 21
3.1 Motivation for CART Methods . . . . . . . . . . . . . . . . . 21
3.2 Classification and Regression Trees (CART) . . . . . . . . . . 22
3.3 Classification Tree Ensemble Learners . . . . . . . . . . . . . . 25

3.3.1 Bagged CART . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Boosted CART . . . . . . . . . . . . . . . . . . . . . . 29

i



4 Neural Networks for Propensity Score Estimation 35
4.1 Motivation for Neural Networks . . . . . . . . . . . . . . . . . 35
4.2 The Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Multi-Layer Neural Networks . . . . . . . . . . . . . . . . . . 38

4.3.1 Training a Neural Network with Backpropagation . . . 40
4.4 Pros and Cons of Neural Networks for Propensity Score Esti-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Simulation and Results 45
5.1 Treatment Assignment Mechanism . . . . . . . . . . . . . . . 46
5.2 Simulation 1: Vary Treatment Effect Size and Sample Size . . 46
5.3 Simulation 2: Vary Pre-treatment Covariate Strength . . . . . 49
5.4 Simulation 3: Model Misspecification . . . . . . . . . . . . . . 51

5.4.1 Simulation 3a: Unspecified Interaction Term . . . . . . 52
5.4.2 Simulation 3b: Covariate Exclusion . . . . . . . . . . . 54

5.5 Conclusions and Takeaways . . . . . . . . . . . . . . . . . . . 55

ii



Chapter 1

Introduction to Propensity
Scores

1.1 Correlation vs. Causation

Scientific research suggests a correlation between quitting smoking and an
increase in body weight [Audrain-McGovern and Benowitz, 2011]. Suppose
I am interested in researching whether quitting smoking, on average, causes
a change in body weight. In this study, quitting smoking is called the ex-
planatory variable while change in body weight is called the response
variable. Although prior research suggests a strong correlation between
quitting smoking and change in body weight, the correlation does not prove
causation.

As the name suggests, causation implies event A, quitting smoking, caused
event B, an increase in body weight. In contrast, correlation implies that
there exists a relationship between event A and event B. While it is tempt-
ing to assume causation given strong correlation, there exist many possible
explanations for a relationship with strong correlation. For instance,

1. The opposite could be true: B causes A

2. There is an unobserved causal variable: A and B could be correlated,
but both events are caused by C

3. There exists a dependency in the relationship: A causes B as long as
D happens
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4. There is a chain reaction: A causes E, and E then causes B

In all of the above instances, it is scientifically incorrect to conclude that A
causes B. In items 2-4, there exists what is called a confounding variable.
A confounding variable is a variable which affects both the explanatory and
response variable. For instance, access to healthcare could affect both a
subject’s change in body weight and whether the subject quits smoking.

Randomized Controlled Trials (RCTs) are often considered the gold stan-
dard for causal inference. In RCTs, proper subject randomization estab-
lishes highly similar distributions of covariates in both treatment and control
groups. With equal distribution of covariates (i.e., equal distribution of all
possible confounding variables), one can estimate the treatment effect by
comparing the outcomes of those in the treated group to those in the con-
trol.

While RCTs are ideal, conducting an experiment with sufficient random-
ization and control is expensive and often unethical. In the smoking and
bodyweight example, it would be completely unethical to tell half of subject
to quit smoking and the other half to continue smoking! Due to ethics and
accessibility, observational studies are vastly more common. Unfortunately,
observational studies make it nearly impossible to conclude causation due
to the abundance of confounding variables and unequal distribution of co-
variates across the untreated and treated groups. Prior literature suggests
that the usage of propensity scores can indirectly allow scientists to conclude
causation and estimate an unbiased treatment effect in observational settings
[Rosenbaum and Rubin, 1984].

1.2 Notation and Average Treatment Effect

Consider a study in which we are trying to estimate the effect of a treatment
on a response variable. Here, let 1 and 0 denote two different treatments.
Given N participants, consider the ith where i = 1, . . . , N . The ith partic-
ipant will either receive the treatment 1 or treatment 0. If we let R denote
the random response variable, then ri1 is the response associated with the ith
participant receiving treatment 1 and ri0 the response associated with the
ith participant receiving treatment 0.

Causal effects are comparisons of ri1 and ri0, typically ri1−ri0 [Rosenbaum
and Rubin, 1984]. Mathematically, the average treatment effect is defined as
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follows:

ATE = E(r1)− E(r0) where E(*) is the population average (1.1)

Let zi = 1 if the ith individual is assigned to the treatment group and
zi = 0 if assigned to control group. Moreover, let xi denote a vector of
pretreatment observed covariate measures for individual i. For instance, if we
are interested in drawing a causal relationship between quitting smoking and
change in weight, logical pretreatment covariates would likely include: sex,
income, smoking intensity, smoking duration, access to heath care, alcohol
use, etc. For each subject i, their covariate measures comprise the vector xi.

Since each participant receives only a single treatment, either ri1 or ri0
must be unknown. The unrealized response for subject i is called the coun-
terfactual. In RCTs, this unknown response is not an issue as proper subject
randomization ensures that, on average, the treated and untreated popula-
tions do not systematically differ [Rosenbaum and Rubin, 1984]. In terms of
expected value, for every pretreatement covariate x, E(x | z = 1) = E(x |
z = 0). Thus, in RCTs, simply comparing the average treated response to
the average untreated response provides an unbiased estimate for the average
treatment effect.

However, observational studies introduce systematic differences between
the treated population and untreated population. In terms of expected value,
for any pretreatment covariate x, E(x | z = 1) 6= E(x | z = 0). On average,
the values of an observed pretreatment covariate are different for the treated
and the untreated. As such, it no longer suffices to compare the outcomes
of the treated and the untreated to estimate the average treatment effect
as in RCTs. In studies that lack covariate balance between the treated and
untreated, we must know all subjects’ responses under treatment and under
no treatment to estimate an unbiased average treatment effect. Since receiv-
ing treatment and not receiving treatment are mutually exclusive, there will
always exist an unknown counterfactual response. To remedy the missing
data problem, we must compare each treated subject to a similar untreated
subject. The similarity of two subjects will be determined by their respective
conditional probabilities of receiving treatment given a vector of covariates.

With sufficient pretreatment similarity between a treated and untreated
subject, we can estimate an treatment effect. From there, we can take sam-
ple averages to obtain the average treatment effect, the average change in
response resulting from treatment.
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1.3 Balancing Score

As mentioned in Section 1.1, RCTs allow us to estimate the average treat-
ment effect by comparing the outcomes of the treatment and control group.
More specifically, ATE = E(r | z = 1) − E(r | z = 0) where r denotes the
subjects’ response and z denotes a binary treatment indicator. In observa-
tional studies, however, individuals in the treated group often systematically
differ from individuals in the untreated group. For instance, individuals who
quit smoking likely have better access to healthcare than those who do not
quit smoking. The systematic differences between those who quit smoking,
the treated group, and those who do not quit smoking, the untreated group,
motivate the use of propensity scores as a balancing mechanism.

As defined by Rosenbaum and Rubin [1983], a balancing score, b(x), is a
function of the observed covariates x such that the conditional distribution
of x given b(x) is the same for the treated (z = 1) and the untreated (z = 0).
For example, individuals with the same balancing score, b(x), will therefore
have similar access to healthcare regardless of treatment group.

The propensity score, defined in the following section, is an example of
a balancing score. Rosenbaum and Rubin [1983] show that, conditional on
some assumptions detailed later, the difference in response means between
the treated and untreated at each value of the propensity score provides an
unbiased estimation of the average treatment effect at that propensity score
value.

1.3.1 Propensity Score Definition

Propensity scores are balancing scores and provide a mechanism to estimate
the average treatment effect. A propensity score is a subject’s probability of
receiving treatment conditional on a vector of observed pretreatment covari-
ates, xi. Let ei(x) denote subject i’s propensity score.

e(xi) = P (zi = 1 | xi) (1.2)

In order to achieve an unbiased estimate for the average treatment effect, a
few assumptions must hold. First, the observed covariates, x, must explain all
of the pre-existing differences between the treated and untreated group; this
is known as the strong ignorability assumption. In essence, the strong
ignorability assumption says that all of potential confounding variables have
been measured prior to treatment.
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Additionally, an individual’s outcome must not be affected by another
individual’s outcome; this is known as the stable unit treatment value
assumption. Lastly, all individuals must have a propensity score strictly
less than 1; no individual receives treatment with complete certainty.

Under the prior assumptions, Rosenbaum and Rubin [1983] show that, on
average, the expected value of x, conditional on e(x), is the same regardless
of treatment group. Mathematically, for a given covariate vector x,

E(x | e(x), z = 1) = E(x | e(x), z = 0) (1.3)

In other words, if a matched treated-untreated subject pair or subclass of
subjects are homogeneous in e(x), then the matched pair or subclass will
have the same distribution in x [Rosenbaum and Rubin, 1984]. Rosenbaum
and Rubin [1984] go on to show that, under strongly ignorable treatment
assignment, observations with the same propensity score can act as controls
for one another, and thus the expected difference in their responses equals the
average treatment effect. Note, this result allows us to estimate the average
treatment effect without ever knowing the counterfactual response!

Given the proposed theory, the question now is: how do we calculate and
condition on the propensity scores? It turns out that propensity scores can
be applied via matching, stratification, and weighting. In this paper, I will
apply propensity scores using stratification, also known as sub-classification.
Sub-classification is detailed in the following section.

1.4 Propensity Score Stratification

Stratification is a common method for controlling systematic differences be-
tween treated and untreated groups. The main idea is to divide the sample
into “similar” groups based on the observed covariates; each group is called a
‘strata’. Then, the researcher can compare the treated and untreated obser-
vations within a given strata to estimate a strata average treatment effect.

The propensity score is a scalar function of the p covariates and contains
adequate information to successfully balance the covariates [Rosenbaum and
Rubin, 1983]. Rosenbaum and Rubin [1984] claim that as few as 5 strata
based on propensity scores are sufficient to remove 90% of the bias within
the p covariates. So, while in an ideal world we would form a strata for each
distinct propensity score, e(xi), to achieve a perfect covariate balance within
the treated and untreated subjects, in practice, this is impractical and often
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unnecessary. The propensity scores are simply estimations, and thus it is
impossible to create strata perfectly homogeneous in e(x) that contain both
treated and untreated subjects.

Instead of perfect homogeneity, strata are defined by intervals of propen-
sity scores. Neuhäuser et al. [2018] study the optimal number of strata to
estimate the average treatment effect. While Rosenbaum and Rubin [1984]
suggest using 5 strata, Neuhäuser et al. [2018] suggest the researcher can
obtain minimal bias and maximal power under the null with 10 strata. How-
ever, Neuhäuser et al. [2018] note that under the circumstance where there
isn’t a need for propensity score balancing, more highly refined strata yield
substantially less power. However, both Rosenbaum and Rubin [1984] and
Neuhäuser et al. [2018] estimate propensity scores using parametric tech-
niques, and the optimal strata may differ depending of the technique. For
the purposes of my simulations, I use 5 strata.

1.5 Evaluating the Propensity Score Useful-

ness

The goal in propensity score stratification is to eliminate the covariate im-
balance between the treated and untreated groups. There exists covariate
balance if the distribution of covariates is the same between the treated and
untreated group [Otok et al., 2020].

As mentioned in Section 1.3.1, Rosenbaum and Rubin [1983] show that
if we condition on the propensity score, then the distribution of observed
covariates will be independent of treatment assignment. The end goal of
achieving covariate balance motivates a method to evaluate the usefulness
of our propensity scores. How well did the propensity scores balance the
distribution of covariates between the treated and untreated groups? Only
once we have reached covariate balance can we determine the average causal
treatment effect.

1.5.1 Bias Reduction

We can determine how well a propensity score estimates the probability of
treatment by looking at bias reduction. Prior to stratification, the initial
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bias in e(x) is BI .

BI = E(e(x) | z = 1)− E(e(x) | z = 0) (1.4)

Let Ik be a range of propensity scores that defines subclass k where k =
1, . . . , K. The resulting bias in e(x) is BS.

BS =
K∑
k=1

[E(e(x) | z = 1, e(x) ∈ Ik)−E(e(x) | z = 0, e(x) ∈ Ik)]P (e(x) ∈ Ik)

(1.5)
We can then measure the percent reduction in bias in e(x) resulting from
propensity score stratification.

Percent Bias Reduction(PBM) = (1− BS

BI

) · 100% (1.6)

While a large percent bias reduction is often a sign of improvement, it does
not indicate perfect covariate balance. In addition to bias reduction analysis,
it is vital to check for covariate balance between the treated and untreated
subjects for each covariate within each strata.

1.5.2 Pre-treatment Covariate Hypothesis Testing

Propensity score stratification is an attempt to create subclasses of observa-
tions that are “similar enough” in pre-treatment covariate distribution such
that the only difference between observations within a strata is treatment
group. If we can achieve this similarity condition, then we can estimate the
average treatment effect. “Similar” is too vague for our purposes. As such,
we quantify significant dissimilarity via a hypothesis test to check for sig-
nificant differences between the treated and untreated individuals within a
given strata for a given pre-treatment covariate. Within a strata, we hope
that there are no statistically significant differences in average pre-treatment
covariate values between treatment groups. To check, we follow the hypoth-
esis tests outlined below.

Note: The following tests are performed within each strata (defined by a
range of propensity scores) for each pre-treatment covariate. If we adequately
estimate the propensity scores, there should be no significant differences be-
tween treatment groups within a strata for the pre-treatment covariates.
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1. Two Population t-test

If the covariate is continuous, one can check for covariate balance
via a t-test. A t-test is a statistical technique to decide whether there
is a significant difference in the mean of a variable between two groups.
After propensity score subclassification, we do not want any significant
differences between the means of the untreated and treated for a given
covariate within each subclass.

To test for covariate balance within each subclass, construct a hypothe-
sis test for each covariate of the following form. First, let group 1 denote
all treated individuals. Similarly let group 2 denote all untreated indi-
viduals. Let µ1, µ2 denote the respective population mean for group 1
and group 2 for a given pre-treatment covariate. Additionally, let x̄1, x̄2

denote the respective sample means and N1, N2 represent the size of the
samples for group 1 and group 2. Finally, let s1, s2 denote the sample
standard deviations.

• Hypotheses:

H0 : µ1 = µ2 (Null Hypothesis)

H1 : µ1 6= µ2 (Alternative Hypothesis)

• Statistic:

T = x̄1−x̄2
sp

√
1

N1
+ 1

N2

where s2
p =

(N1−1)s21+(N2−1)s22
N1+N2−2

Note: The t-statistic is distributed according to a t-distribution
with (N1 +N2 − 2) degrees of freedom. Mathematically,

T ∼ tN1+N2−2

• Test:

δ = {Reject Null Hypothesis if |T | > t1−α/2}
Note: Rejecting the null hypothesis suggests that there is a

statistically significant difference in the population means.

1.5.3 Checking for Covariate Balance After Strat-
ification Example

In this example, I apply the t-test outlined above on a real-world prob-
lem. More specifically, the data I will use comes from the r package
‘cidata’ and contains 1,566 observations.
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Our casual question of interest is: Does quitting smoking cause a
change in body weight?

It follows that change in body weight, denoted wt82 71, is the response
variable. Quitting smoking, denoted ‘qsmk’, will serve as the treatment
indicator variable; 1 denotes the subject quit smoking. Lastly, subjects’
age, income, education, and smoking intensity serve as pre-treatment
covariates. To better grasp the data structure, consider a sample of 10
observations from the data set.

Figure 1.1: ‘wt82 71’(response variable), ‘qsmk’(treatment variable)

While the end goal is to estimate the average causal effect of quitting
smoking on body weight, we do not have a randomized controlled trial.
As such, there likely exist systematic differences between those who
quit smoking (i.e., received treatment) and those who did not (i.e., did
not receive treatment). For instance, it is possible that those who quit
smoking had lower initial smoking intensities compared to those who
did not quit smoking. To visually investigate this claim, consider the
plot below:
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Figure 1.2: Pre-treatment smoking intensity levels segmented by those who
quit smoking and those who did not quit smoking. Note, the the mean initial
smoking intensity for those who quit smoking is lower than for those who did
not quit smoking.

Looking at the graph above, it seems as though the subjects who quit
smoking had initial smoking intensities lower than those who did not
quit smoking. To put numbers to our intuition, I run a t-test to see
whether there exists a statistically significant difference in population
means for smoking intensity between those who quit and those who
did not quit. The output of the t-test (computed in r) confirms our
intuition. The sample smoking intensity mean for those who did not
quit smoking is 21.19 compared to 18.60 for those who did quit smoking.
Using the sample means and standard errors, we obtain a t-statistic
of 3.68. The p-value associated with the t-statistic is 0.00025 which
is statistically significant at the α = 0.05 level. Thus, we conclude
that there is a statistically significant difference in the population level
smoking intensity levels for those who quit smoking and those who did
not quit.

If we were to compute the average treatment effect by taking the
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difference of the weighted mean responses for the treated and un-
treated group, we essentially would be comparing oranges to apples.
More specifically, there are significant pre-treatment differences be-
tween those who quit smoking and those who did not, and thus we
cannot isolate the treatment effect. In order to achieve an ‘apples
to apples’ comparison, we use propensity score stratification to cre-
ate groups of individuals with similar initial probabilities of quitting
smoking according to their pre-treatment characteristics.

For simplicity, I estimated all propensity scores (the probability of re-
ceiving treatment conditional on pre-treatment covariates) using lo-
gistic regression. I then segmented the data into 5 strata defined by
ranges of propensity scores. Consider the 3rd strata. The graph below
compares the smoking intensity levels for those who quit smoking and
those who did not quit smoking within the 3rd strata.

Figure 1.3: Pre-treatment smoking intensity levels within the 3rd strata seg-
mented by those who quit and those who did not quit smoking. Note, the
mean initial smoking intensities for those who quit smoking is similar to those
who did not quit smoking.
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Upon initial glance, there seems to be greater balance between the
pre-treatment smoking intensity levels for those who quit smoking vs.
those who did not quit. The goal of propensity score stratification is to
create groups of subjects that are similar in all pre-treatment covariates.
As such, we hope that there is not a significant difference within the
3rd strata in pre-treatment smoking intensities between those who quit
smoking and those who did not quit smoking. To test, I perform a
two-sided t-test.

The results of the t-test (performed in r) are as follows. Within strata 3,
the sample smoking intensity mean for those who quit smoking is 21.81
and 22.05 for those who did not quit smoking. This yield a t-statistic
of 0.16 and a corresponding p-value of 0.87; the p-value is insignificant
at the α = 0.5 significance level. Thus, we conclude that there is not
a statistically significant difference between the smoking intensities for
those who quit smoking and those who did not quit smoking within
strata 3. Yay!

To fully evaluate the propensity score stratification effectiveness, we
would repeat this process for each pre-treatment covariate within each
strata. Successful propensity score stratification will yield insignificant
pre-treatment covariate differences between those who quit smoking
and those who did not quit smoking within each strata.

2. Test of Proportions

If the pre-treatment covariate is categorical and the response is
categorical, we use the difference test of proportions, also know as the
z-test. Here, let p1, p2 denote the population proportions of successes in
group 1 and group 2 respectively. Given a pre-treatment covariate with
2 levels, p̂1 denotes the sample proportion of successes in group 1 over
the group 1 sample size. Similarly, p̂2 denotes the sample proportion
of successes in group 2 over the group 2 sample size.

• Hypotheses:

H0 : p1 = p2 (Null Hypothesis)

H1 : p1 6= p2 (Alternative Hypothesis)

• Statistic:

Z = p̂1−p̂2√
p̂1(1−p̂1)

N1
+

p̂2(1−p̂2)
N2
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• Test:

δ = {Reject Null Hypothesis if |Z| > z1−α/2}
Note: Rejecting the null hypothesis suggests that there is a

statistically significant difference in the population proportions
between group 1 and group 2 for a given covariate.

1.6 Estimating the Average Treatment Effect

Recall, in randomized controlled trials we estimate an unbiased average treat-
ment effect simply by comparing the average response values between treat-
ment groups.

ATE = E(r | z = 1)− E(r | z = 0)

However, in observational studies, the treated an untreated groups will
often systematically differ in observed pre-treatment covariates. As we saw
in Section 1.4, to achieve a similar covariate balance as in RCTs, we stratify
the subjects according to their estimated propensity scores. Once divided
into strata and checked for covariate balance, we compare response values
within each strata to achieve an unbiased estimate for the ATE.

Let ÂTE denote the estimated ATE. The steps to estimate the unbiased

ÂTE are as follows.

1. Divide observations into strata defined by a range of propensity scores
(see Chapter 2, 3, 4). Let each strata be denoted by Ik where k =
1 . . . K.

2. Determine the average outcome of the treatment and control groups
within each subclass.

Nt =
∑K

k=1Ntk Total number of treated individuals across all strata.

Nc =
∑K

k=1 Nck Total number of untreated individuals across all strata.

r̄tk =
∑Ntk

i=1
ritk
Ntk

Average response of the treated individuals in strata k.

r̄ck =
∑Nck

i=1
rick
Nck

Average response of the untreated individuals in strata k.

13



3. Calculate the estimated ATE, ÂTE,

ÂTE =
K∑
k=1

Ntk +Nck

Nt +Nc

(r̄tk − r̄ck) (1.7)

Summation of the weighted average treatment effects over all strata.

4. Calculate the standard error, SE(ÂTE),

SE(ÂTE) =

√√√√ K∑
k=1

(
Ntk +Nck

Nt +Nc

)2(
s2
tk

Ntk

+
s2
ck

Nck

) (1.8)

Once we calculate ÂTE and the standard error of ÂTE, we can per-
form significance testing on the the true average treatment effect parameter,
denoted ATE.

• Hypotheses & Significance:

H0 : ATE = 0 There is no treatment effect.

H1 : ATE 6= 0 There is a treatment effect.

α = 0.05 This will control our type I error.

• Statistic:

Z = ÂTE−0

SE(ÂTE)

• Test:

δ = {Reject null if |Z| > Z0.975}

In this case, rejecting the null hypothesis and accepting the alternative
hypothesis suggests that the parameter average treatment effect is signifi-
cantly different from zero.
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Chapter 2

Logistic Regression for
Propensity Score Estimation

Propensity score stratification (detailed in Section 1.4) provides an excellent
method to estimate the unconfounded average treatment effect. To success-
fully construct the strata, we must determine each subject’s propensity score,
a.k.a. each subject’s conditional probability of receiving treatment given a
vector of pre-treatment covariates. Logistic regression provides one method
to estimate propensity scores. It is important to recognize that our goal
in Chapters 2, 3, and 4 is to successfully predict whether a subject will re-
ceive treatment. Notably, we are not predicting the response variable of
interest. If we can successfully predict each subject’s probability of receiving
treatment, then we essentially, within each strata, have access to ‘apples to
apples’ comparisons between treatment groups.

In this chapter, I detail the theory of logistic regression, the application to
propensity score estimation, and the benefits and drawbacks of using logistic
regression.

2.1 Generalized Linear Models

The logistic regression model exists within the family of generalized linear
models (shortened as GLM). Aside from logistic regression, some examples of
GLMs include Poisson regression, log-linear regression, and linear regression.
GLMs are characterized by three similarities. In all GLMs, there exists the
following components:
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1. Random component: a probability distribution describing the response
variable, denoted Y . The random component is often described by
distributions from the exponential family (Normal, Poisson, Binomial,
etc).

2. Linear component: The explanatory variables and the linear combina-
tion of such variables. i.e. β0 + β1X1 + . . . βnXp

3. Link function (η): The functional relationship between the expected
value of the response variable and the linear explanatory predictors.

GLMs require the observations in the data to be independent. While a
GLM does not necessarily assume a linear relationship between response and
explanatory variables, it does assume a linear relationship between the link
function and the explanatory variables. Mathematically, the link function
must have the following form: η(E(Y | x)) = β0 +β1X1 + · · ·+βnXp. Lastly,
the errors are assumed homoskedastic (i.e. errors are independent of the
explanatory variables). To estimate the coefficients (β1, . . . , βp), GLMs use
maximum likelihood estimation (MLE).

2.2 Logistic Regression Theory

2.2.1 First, Some Notation

Within an observational study of N subjects, consider subject i, where
i = 1 . . . N . Let Zi denote a random variable indicating subject i’s treatment
status. Zi can take on two values: zi = 1 (denotes treatment) with proba-
bility e(xi) or zi = 0 (denotes no treatment) with probability 1− e(xi). Re-
call, e(xi) represents subject i’s propensity score. More specifically, e(xi) =
P(zi = 1 | xi) where xi is a vector of observed pre-treatment covariates for
subject i. To model the binary outcome (treatment vs. no treatment) and
the uncertainty of each event, we can use a Bernoulli distribution:

Zi ∼ Bernoulli(e(xi)) where i = 1, . . . , N (2.1)

2.2.2 Logistic Regression as a GLM

Logistic regression falls within the broader Generalized Linear Model class.
Binary logistic regression models the probability of the occurrence of a binary
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event given categorical or numerical explanatory variables. Additionally,
logistic regression allows us to estimate the effect of a series of explanatory
variables on the response. Logistic regression maps to the general GLM
criteria as follows:

1. Random component: Zi ∼ Bernoulli(e(xi)) where Zi is the treatment
indicator variable for subject i.

2. Linear component: Let β0 + β1X1 + · · ·+ βpXp denote the linear com-
bination of explanatory variables. Note that explanatory variables can
undergo transformations.

3. Link function: η(xi) = logit(e(xi)) = ln

(
e(xi)

1−e(xi)

)
From section 2.1, we know the link function is defined such that it has a

linear relationship with the series of explanatory variables. Thus,

logit(e(xi)) = ln

(
e(xi)

1− e(xi)

)
= β0 + β1X1 + · · ·+ βpXp (2.2)

From this relationship, we can solve for e(xi) thereby deriving the esti-
mated probability of treatment. Let α = β0+β1X1+· · ·+βpXp for simplicity.

ln

(
e(xi)

1− e(xi)

)
= α (Given by equation 2.2)

e(xi)

1− e(xi)
= eα (Exponentiate both sides)

e(xi) = eα · (1− e(xi)) (Cross Multiply)

e(xi) = eα − e(xi) · eα (Distribute eα)

e(xi) + e(xi) · eα = eα (Isolate e(xi))

ˆe(xi) =
eα

1 + eα
= logit−1(α) (Divide by (1 + eα))

First, note that ˆe(xi) ∈ [0, 1] and thus nicely satisfies the bounds of a
probability. From the estimated regression equation, we estimate all β values
through maximum likelihood estimation (MLE). In maximum likelihood esti-
mation, we maximize the conditional likelihood of observing the data given a
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distribution and parameter. For the purposes of this thesis, all optimization
will be done in R.

In linear regression, our response variable is estimated by a linear com-
bination of the explanatory variables. In contrast, in logistic regression, the
linear combination of the explanatory variables estimates the ln(odds) of
treatment given a set of explanatory variables.

The odds of an event is defined as ratio of the probability of success to
the probability of failure. Probability and odds are defined as follows:

Probability =
# successes

# possible outcomes
(2.3)

Odds =
# successes

# failures
(2.4)

To better understand the concept of odds, consider the following example.

Example 2.1. Probability of Drawing a Diamond
You are asked to draw one card from a standard 52 playing card deck. What
is the probability that your chosen card is a diamond?

P (diamond) =
# Diamonds in Deck

# Cards in Deck
=

13

52
= 0.25

The probability of drawing a diamond from a 52 card deck is 25%.

Odds provide an alternative measure of likelihood for a given outcome.

Example 2.2. Odds of Drawing a Diamond From a 52 Card Deck

Odds(diamond) =
# diamonds

# non-diamonds
=

13

39
= 0.333

The odds of drawing a diamond from a 52 card deck is 0.333.
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Note, in logistic regression, we are frequently more concerned with odds
rather than probability due to simpler interpretation of the coefficients. More
specifically, researchers are often more interested in odds ratios rather differ-
ences in odds due to the simplicity of interpretation.

In linear regression, E(Y | X1) = β0 + β1X1, the interpretation of β1 is
simple; for a unit increase in X1, E(Y | X1) increases by β1. We can see this
clearly by subtracting the two equations: β0 + β1(x)− β0 − β1(x + 1) = β1.
However, in logistic regression, the comparison of models happens in ln(odds)
units. Consider the following.

Let Zi ∼ Bernoulli(e(xi)) where zi = 1 means subject i received treatment
and zi = 0 means the subject did not receive treatment. Let X denote an
explanatory variable. Note, e(xi) denotes subject i’s probability of receiving
treatment (i.e., the propensity score).

Using the logit link function, we obtain the following relationship between
explanatory variables and response:

ln

(
e(xi)

1− e(xi)

)
= β0 + β1X

Often researchers are interested in the effect of a unit change in the ex-
planatory variable on the response. Let X = x for individual 1, and let
X = x+ 1 for individual 2. More formally,

ln(odds[X = x]) = β0 + β1(x)

ln(odds[X = x+ 1]) = β0 + β1(x+ 1)

We can exponentiate both sides to isolate the odds.

odds[X = x] = eβ0+β1(x)

odds[X = x+ 1] = eβ0+β1(x+1)

The odds ratio(OR) for a unit change in X is:

OR =
odds[X = x+ 1]

odds[X = x]
=
eβ0+β1(x+1)

eβ0+β1(x)
= eβ1 (2.5)

The odds ratio does not depend on X! This means that regardless
of the initial X-value, the odds ratio for a unit change in the explanatory
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variable will be constant, eβ1 . The odds ratio describes the change in odds
due to a unit increase in the explanatory variable.

Since the OR is constant regardless of the initial value of the explanatory
variable and the OR has a nice interpretation, it is widely used and discussed
in logistic regression. The constant characteristic is not true for other statis-
tics we may want to calculate. For instance, the difference in odds is not
constant, but rather highly dependent on the initial value of X.

odds[X = x+1]−odds[X = x] = eβ0+β1(x+1)−eβ0+β1(x) = eβ0(eβ1(x+1)−eβ1(x))
(2.6)

2.3 Pros and Cons of Logistic Regression

Logistic regression is overwhelmingly the most common technique used for
propensity score estimation. Westreich et al. [2010] detail the advantages
and disadvantages in using logistic regression for propensity score estima-
tion. First, the logistic model produces likelihoods constrained to [0,1] which
is necessary in probability estimation. Note, propensity score estimation is
probability estimation, so the constraint is good! Moreover, logistic regres-
sion is fairly intellectually accessible without exposure to advanced mathe-
matics. Due to the extensive research and studies surrounding logistic regres-
sion, it is conveniently implemented within most statistical software including
R, STATA, and Python. These advantages are convincing in using logistic
regression for propensity score estimation. However, logistic regression has
several pitfalls which are sparsely acknowledged in existing literature.

First, logistic regression assumes a linear relationship between the logit
link function and predictor variables. Westreich et al. [2010] found that over
90% of studies using logistic regression to estimate propensity scores con-
sistently do not assess this assumption of linearity. Additionally, Westreich
et al. [2010] claim researchers rarely used interaction terms within their mod-
els; this oversight is highly problematic as logistic regression is a parametric
statistical technique which rests heavily on accurate predefined relationships
between the explanatory variables and treatment level. Since non-parametric
machine learning models often require fewer assumptions and look to the
data to retroactively define interactions, we will consider these models in
subsequent chapters.
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Chapter 3

Tree-based methods for
Propensity Score Estimation

In estimating propensity scores, we estimate each subject’s probability of
receiving treatment conditional on a set of pre-treatment covariates. As
we saw in Chapter 2, logistic regression, the most commonly used method
for propensity score estimation, and its ability to predict treatment with
high accuracy rests entirely on a researcher’s ability to correctly specify the
functional form of covariates and the presence or absence of interactions
between covariates. Without sufficient domain and mathematical knowledge,
mispecifications of covariate relationships are common.

In this chapter, to avoid the need to pre-specify the functional form of
the model, I motivate the use of the non-parametric tree-based techniques
for propensity score estimation. More specifically, I begin with an individual
classification tree and then further explore ensemble methods such as bagging
and boosting.

3.1 Motivation for CART Methods

As described in the end of Chapter 2, parametric models rely heavily on cor-
rectly specified functional forms of the covariates and the presence or absence
of interactions. Should the researcher incorrectly specify the relationship be-
tween the covariates, propensity score stratification will not yield an unbiased
estimate of the average treatment effect [de Vries et al., 2018]. Thus, many
have suggested the use of machine learning techniques, including tree-based
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methods, to eliminate the need to satisfy the previously stated assumptions
of covariate functional form and interactions.

As I traverse through alternative methods for propensity score estima-
tion, it is important to remember that the goal is to model the probability
of treatment for each subject. More importantly, we are not trying to pre-
dict the response of interest in the study. Consider again the example of
whether quitting smoking causes an increase in body weight. In propensity
score estimation, we are trying to model the probability that a subject quits
smoking, not the change in body weight. Tree-based methods provide one
way to model the probability that a subject quits smoking.

3.2 Classification and Regression Trees (CART)

CART is a supervised learning technique that finds an optimal set of rules
to partition the data based on input values, a.k.a. covariates. A single tree
consists of a root node, branches, and leaf/terminal nodes. At each node,
there is an if/else statement which defines the binary splits of the data; leaf
nodes results from this binary split. Once the model reaches an ‘optimal’
point, the most recent leaf nodes are deemed terminal nodes.

As mentioned above, each non-terminal leaf node further splits based
on some criteria thereby creating additional leaf nodes. The goal in data
partitioning is to minimize the heterogeneity amongst the response values. In
the case of propensity score estimation, the response of interest is treatment
exposure. A common measure of heterogeneity is called the Gini impurity,
denoted G. Given C total classes, let p(i) denote the probability of choosing
a point belonging to class i. The Gini impurity calculation occurs within
each node and is calculated as follows:

G =
C∑
i=1

p(i)(1− p(i)) (3.1)

Gini impurity is used to determine which variable to split on to mini-
mize heterogeneity. The variable and split-point that results in the maximal
decrease in Gini impurity is chosen. After deciding the split criteria, one
must specify the criteria for terminating the recursive partitioning process.
A common strategy to decide whether a node will further split or become
a terminal node is based on the existing number of observations within the
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node. Should the node have fewer than the minimum number of observations
to split, then that node will become a terminal node and tree development
will cease. Additionally, many researchers set a maximum tree depth to avoid
overfitting; if the maximum depth is reached, the tree will stop developing.
Lastly, once there is a developed classification tree with many terminal nodes,
the researcher must decide the criteria upon which to classify the terminal
nodes. Most often, this is decided via ‘majority rules’; the terminal node is
labeled as the class to which the majority of the observations belong.

Example 3.1. Classification Tree Example

Consider again the casual questions posed in Subsection 1.5.3. As a re-
fresher, we are wondering whether quitting smoking causes a change in body
weight. In the data set sourced from the ‘cidata’ package in r, ‘qsmk’ denotes
the treatment variable (1 = subject quit smoking) and ‘wt73 82’ denotes the
response variable. We consider 4 other explanatory variables: ‘age’, ‘income’,
‘education’, and ‘smokeintensity’.

Recall, this chapter is all about propensity score estimation. As such, we
are trying to estimate each subject’s probability of quitting smoking given
their pre-treatment age, income, education, and smoking intensity. To do so,
we will use a single classification tree.

In the classification tree, the root node includes all observations in the
data set (N = 1,566). Then, the algorithm searches for the variable and split
point combination which results in the greatest decrease in Gini impurity.
In this case, the first binary split is defined by “smokinghistory ≥ 15”. The
data is partitioned accordingly, thereby creating 2 leaf nodes. Now, the
algorithm looks within each leaf node and determines the optimal split based
on largest decrease in Gini impurity. In this example, the leaf node where
“smokinghistory ≥ 15” becomes a terminal node since there does not exist
a further partition that results in a significant decrease in Gini impurity.
However, the leaf node where “smokinghistory < 15” is further partitioned.
More specifically, the greatest decrease in Gini impurity results from the split
“age < 52”; this split creates two additional leaf nodes. The partitioning
process continues until the leaf nodes reach the stopping criterion, thereby
becoming terminal nodes.

Once the classification tree model is built out entirely, we construct our
propensity score predictions. Consider a single terminal node. The propen-
sity score for the observations within that terminal node is calculated via
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the proportion of treated observations within the node. For instance, if a
terminal node has 10 subjects total and 8 of the 10 subjects quit smoking,
then the propensity score for all 10 subjects within the terminal node would
be 8

10
= 0.80.

The following classification tree diagram reflects the data partitions men-
tioned above. Note, there are two numbers within each leaf; the top number
represents the probability of quitting smoking, and the bottom number rep-
resents the percentage of total subjects who fall into that class.

Figure 3.1: Example of a single classification tree used to estimate propensity
scores. In this case, the classification tree seeks to predict whether a subject
quits smoking given a vector of pre-treatment covariates.

There are a few things to note about Gini impurity and classification
trees. In order for a classification tree to split, there must be an immediate
decrease in Gini impurity. While many choices of splits will decrease Gini
impurity, we always choose the split that maximally decreases Gini impurity.
This property leads to what is commonly called a greedy algorithm; at
every split, the tree chooses the split which is best at the current moment
without considering future paths. The greediness of the algorithm can lead
to sub-optimal models.

In addition to being a greedy algorithm, classification trees are highly
sensitive to a few new training observations and thus are called high-variance
estimators. Put more simply, if we randomly split the training data into
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two parts and fit a tree to each part, the two resulting trees would be very
different. The high variability of the estimator can cause a drastic decrease
in the predictive ability [de Vries et al., 2018]. For this reason, I turn to
ensemble tree-based methods.

3.3 Classification Tree Ensemble Learners

Single classification trees can be used to form ensemble learners. An en-
semble learner is a learner which uses many simple learners to improve
predictive performance. Here, I will consider two ensemble learners: boot-
strapped aggregated (bagged) CART and boosted CART.

3.3.1 Bagged CART

Bootstrapped aggregated (bagged) CART was first introduced by Leo Breiman
in 1996. Bagged CART is fairly straightforward: fit a classification tree to
many independent bootstrapped training sets and aggregate the trees to form
a final prediction. This aggregation technique aims to decrease the variance
of a predictor and in turn maximize predictive capabilities [Breiman, 1995].
To build this learner, there are three main things to understand:

1. Classification and Regression Trees (detailed in section 3.2)

2. Bootstrapping

3. Aggregating estimates

In this section, I focus on bootstrapping and aggregation. The bootstrap
is a statistical re-sampling technique used to construct random samples of
the existing data. In real life, we only ever have one data set to train the
model on. Bootstrapping is a method to construct additional training data
sets without gathering any additional data. In bootstrapping, a researcher
repeatedly samples from the original training data set with replacement; each
sample is considered an observation in the new bootstrapped, training data
set. I will return to the why part of bootstrapping in a bit.

Constructing a single bootstrapped classification tree consists of two steps.
First, construct a random sample with replacement of size N from existing
training data set (also of size N). Second, build a classification tree using
the bootstrapped sample as the training data set. Then, repeat steps 1 and
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2 until you have reached the chosen number of individual classification trees.
After this process, we end up with many separate bootstrapped classification
trees.

Now, we turn our focus toward the bootstrap aggregation step, also known
as bagging. As mentioned at the end of section 3.2, single classification
trees are high-variance estimators. A method to counter this high-variance
property is bagging. In bagging, the idea is to combine many weak learners,
such as classification trees, fitted on bootstrapped training sets and predict
a new observation’s class via a majority rule.

The method of bagging is known to reduce variance in the estimator as
shown via a typical result in statistical theory. As eloquently noted by Hastie
et al. [2001] and translated into our notation, we let ê1(xi), . . . , êB(xi) denote
B different propensity score estimations each with variance σ2. It follows that
the average of the predictions, êavg(xi), is distributed with variance σ2/B,
which is notably smaller than σ2.

As such, in bagged CART, we take B independent training data sets and
build a regression tree for each data set. After we have built B different re-
gression trees, we use each regression tree to calculate B different propensity
scores for each subject i (i = 1, . . . , N). Finally, for each subject i, we aver-
age the B propensity score estimations. In mathematical notation, subject
i’s propensity score estimation is obtained as follows:

êavg(xi) =
1

B

B∑
b=1

êb(xi) (3.2)

However, in real life, we only have a single data set; this is the glory
of the bootstrap! The bootstrap will allow us to construct the B (non-
independent) training sets via repeated sampling with replacement. Using
the bth bootstrapped sample, we can estimate ê∗avg(xi) via a bagged learner
of the following form. Note, the only difference between equation 3.2 and
equation 3.3 is a slight change in notation to specify the use of bootstrapped
data sets via a *.

ê∗avg(xi) =
1

B

B∑
b=1

ê∗b(xi) (3.3)

Consider the following diagram. First, the researcher constructs B boot-
strapped samples. Note that the samples are constructed via sampling with
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replacement and thus the bootstrapped samples are each different from the
original sample. Additionally, each bootstrapped sample is the same size as
the original sample, 13 observations, however with varying color proportions.
Next, the researcher fits a decision tree to each bootstrapped sample. Final
predictions for a test data set are made via averaging the individual model
predictions. In this case, an individual model’s prediction in the proportion
of red observations to total observations at a given terminal node; thus, you
are averaging proportions to obtain a final proportion. If the final averaged
proportion of red observations to total observation is greater than 50%, then
we classify the observation as “red”.

Figure 3.2: Bagged CART diagram. From the original sample, we construct
B bootstrapped samples. For each bootstrapped sample, we build a decision
tree. To obtain a final model prediction, we average over the individual tree
predictions. For classification, we choose a cutoff point (typically 0.5) and
predict the observation as “red” if the averaged prediction is greater than
0.5, blue otherwise.

27



In the case of propensity score estimation, we are not concerned with final
class predictions, but rather the probability that an observation belongs to
the treated class. Thus, averaging the proportions of treated individuals out
of total individuals within the predicted class of each tree will suffice for
propensity score estimation.

Random Forests

As Hastie et al. [2001] describe, random forests offer a slight improvement
over bagged CART by way of tree de-correlation. More specifically, each split
within each decision tree considers a random subset of explanatory variables.
Other than this slight tweak, random forest construction parallels that of
bagged CART. Generally, a random forest determines each split within each
tree considering only

√
p explanatory variables, where p is the total number

of explanatory variables available. This means that each split is built using
fewer than half of the available predictors. Using fewer predictor variables
might seem counter-intuitive for the goal of maximizing predictive capabili-
ties, however it can drastically reduce the variance of the estimator.

Consider a situation in which there is a single strong predictor and a
handful of moderate predictors. Using a bagged CART model, we build 100
regression trees. Likely, most if not all of the 100 trees will use the strong
predictor to determine the initial split; this results in 100 decision trees with
very similar construction and thus highly correlated predictions. In statistics,
the reduction in variance resulting from averaging correlated quantities is
substantially less than the variance reduction from averaging uncorrelated
quantities. Thus, to achieve minimal variance across predictions, we want to
average uncorrelated or less correlated quantities; a random forest allows us
to do this because the strong predictor will not be the first split in all the
trees since each tree considers fewer than half the variables [Breiman, 2001].

In the diagram below, we can see that the process of tree construction
is identical to that of bagged CART, except the selection of predictors on
which each split is made. Prior to model construction, a researcher must
specify a number of predictor variables to be used to build each tree, typically
this is

√
p where p is the total number of predictor variables. Then, in

determining a best split within each tree, we randomly select a different
subset of

√
p variables. This process can drastically reduce the variance in

predictions, especially when there are many correlated predictor variables
[Breiman, 2001].
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Figure 3.3: Random forest diagram. First, construct B bootstrapped sam-
ples from the original sample. Next, for each bootstrapped sample, randomly
choose a different

√
p set of predictor variables (this differentiates a random

forest from bagged CART). Build the decision tree for each bootstrapped
sample and obtain a final prediction by averaging the B individual predic-
tions.

3.3.2 Boosted CART

In Section 3.3.1, I detail bagged CART and random forests as ensemble learn-
ers that build many trees in parallel to obtain a final prediction. Boosted
CART is an alternative method which builds many shallow tree-based weak
learners in a sequential fashion where the following tree is built using infor-
mation from the previous. The boosted CART model I will consider is called
the Generalized Boosting Model (GBM).

The Generalized Boosting Model is an algorithm that sequentially com-
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bines simple regression trees in pursuit of a model with high predictive ca-
pabilities. Note, in our case, we want a model that can accurately predict a
subject conditional probability of receiving treatment, the propensity score.

The first thing to note is that the GBM algorithm models the ln(odds of
treatment), rather than the probability of treatment directly; in Chapter 2,
we saw logistic regression also models ln(odds of treatment)! Let g(x) denote
the GBM model. Mathematically, the output of the model is the following:

ĝ(xi) = ln

(
ê(xi)

1− ê(xi)

)
where ê(xi) denotes subject i’s estimated propensity score

(3.4)
Note, we can easily isolate subject i’s propensity score in equation 3.4 to

obtain:

ê(xi) =
eĝ(xi)

1 + eĝ(xi)
(3.5)

As I previously mentioned, GBM is an algorithm that iteratively builds a
set of simple regression trees which are then combined to obtain a final model.
Initially, the algorithm sets ĝ(x) equal to the baseline log-odds of treatment:
log(z̄/(1− z̄) where z̄ is the sample proportion of treated subjects. Next, the
algorithm searches for an adjustment, h(x), to improve model fit.

How should we measure model fit? Well, the model should maximize the
likelihood of observing the given data! Let’s explore this further.

Consider a study with N subjects. Let Zi denote the random variable
corresponding to treatment for subject i where i = 1, . . . , N . We defined
the propensity score for subject i, e(xi), as the conditional probability of
receiving treatment, Zi = 1. As such, we can describe the distribution of a
single treatment variable as: Zi ∼ Bernoulli(e(xi)) for i = 1, . . . , N . Zi has
a corresponding marginal probability density function:

P (Zi = zi) = (e(xi))
zi(1− e(xi))1−zi (3.6)

From equation 3.6, we can plug in zi = 1 and easily see that P (Zi = 1) =
e(xi).

In this study, we consider N independent subjects who each have an
observed treatment value z1, . . . , zN . Let z denote the vector consisting of
z1, . . . , zN . To represent the likelihood, L, of observing z, we take the product
of the marginal PDFs to obtain a joint PDF. More specifically,

[Note: e(xi) = eg(xi)

1+eg(xi)
]
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L = P (z | e(x1), . . . , e(xN)) =
N∏
i=1

(
eg(xi)

1 + eg(xi)

)zi( eg(xi)

1 + eg(xi)

)1−zi
(3.7)

In improving the model’s ‘goodness of fit’, we seek to maximize the like-
lihood, L, of observing z. However, we will soon see that maximizing ln(L)
is easier, and, due to the monotonic property of the natural log, equally
valid. So, we will quantify an improvement in model fit via maximizing the
Bernoulli log-likelihood, ln(L).

To derive the Bernoulli log-likelihood equation, first take the log of both
sides of equation 3.7 to obtain the following equation.

l = ln(L) =
N∑
i=1

zi ln

(
eg(xi)

1 + eg(xi)

)
+ (1− zi) ln

(
eg(xi)

1 + eg(xi)

)
(3.8)

Next, use properties of logarithms to decompose the fractions on the right
side of equation 3.8.

l =
N∑
i=1

zi

[
g(xi)− ln(1 + eg(xi))

]
+ (1− zi)

[
− ln(1 + eg(xi))

]
(3.9)

Finally, simplify equation 3.9 and obtain the equation below known as
the Bernoulli log-likelihood.

l =
n∑
i=1

zig(xi)− log(1 + exp(g(xi)) (3.10)

We can see from equation 3.10 that l is maximized when there is agree-
ment between g(xi) and zi such that g(xi) is negative when zi = 0 and g(xi)
is positive when zi = 1 [McCaffrey et al., 2005]. This makes intuitive sense as
we maximize the log-odds when the treatment assignment indicator variable
agrees with the log-odds of receiving treatment.

In searching for an adjustment, h(x), McCaffrey et al. [2005] note that
the expected log-likelihood of the data should increase with the adjustment
h where λ is a step-size constant. In terms of expected value,

E(l(ĝ + λh)) > E(l(ĝ)) (3.11)
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If the algorithm finds an adjustment such that the above equation holds,
then the model becomes g(x)← g(x) + λh(x) [McCaffrey et al., 2005]. The
process of iteratively searching and adding adjustments continues for a spec-
ified number of iterations.

Now, what is this adjustment, h(x)? In generalized boosted models, h(x)
takes the form of a regression tree and fits the residuals of the current model.
As McCaffrey et al. [2005] note, choosing the adjustment, h(x) to be a re-
gression tree which models the residuals of the current fit is equivalent to es-
timating the derivative of the Bernoulli log-likelihood function (see equation
3.10). The residual for subject i is the difference between zi, the treatment
indicator, and the estimated propensity score, e(xi). More specifically, the
model’s residual for subject i is defined as:

ri = zi −
1

1 + exp(−ĝ(xi))
where ĝ(xi) = ln

(
e(xi)

1− e(xi)

)
(3.12)

Following the construction of the regression tree to model the residuals,
the tree will have partitioned the subjects into k terminal nodes, denoted
T1 . . . Tk. Freedman and Berk [2008] suggests finding the optimal adjustment
to the current model, ĝ(x), separately for each terminal node. More specifi-
cally, the optimal adjustment for all the individuals within the kth terminal
node is defined by:

h(x) = arg maxθ
∑
xi∈Tk

zi(ĝ(xi) + θ)− log(1 + exp(ĝ(xi) + θ)) (3.13)

h(x) ≈
∑

xi∈Tk zi − e(xi)∑
xi∈Tk e(xi)(1− e(xi))

(3.14)

The following steps, as described by McCaffrey et al. [2005], compactly
summarize the generalized boosted model algorithm:

1. Initialize ĝ0(x) = ln( z̄
1−z̄ )

2. For m in 1 . . .M , do the following:

• Compute ri = zi − 1
1+exp(−ĝm−1(xi))

for i = 1, . . . , N

• Build a regression tree to model all the ri. As a result, the data
gets partitioned into k terminal notes denoted T1 . . . Tk.
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• Compute the optimal update for each terminal node (as suggested
by McCaffrey et al. [2005]):

θk(x) =

∑
xi∈Tk zi − e(xi)∑

xi∈Tk e(xi)(1− e(xi))
(3.15)

• Update the overall model to: ĝm(x) ← ĝm−1(x) + λθk(x) where λ
denotes a shrinkage parameter and k(x) determines which termi-
nal node an observation with feature vector x falls into.

It is also important to note that there is a stochastic component within
each new regression tree adjustment. More specifically, the algorithm selects
a different random sub-sample of the data and builds the adjustment, h(x),
using this subset [McCaffrey et al., 2005]. Freedman and Berk [2008] suggests
that a sub-sample constructed using 50% of the original data can reduce the
bias and variance of our final propensity score model.

For a generalized boosted model, there are various important parameters
to specify prior to model construction. More specifically, shrinkage, number
of weak learners, and maximum depth within a weak learner are parameters
that control the learner’s tendency to overfit the data. The shrinkage pa-
rameter controls the learning rate by scaling the contribution of each tree to
the enlarging model. If the shrinkage constant is small, a learner will gener-
ally require a larger number of weak learners to achieve the same predictive
capabilities. McCaffrey et al. [2005] suggests using a shrinkage parameter
of 0.0005. The maximum depth of each tree determines the complexity of
interactions allowed within each model. Generally, the smaller the maximum
depth (i.e., the number of splits within a tree), the less likely the model is
to overfit the data. McCaffrey et al. [2005] suggests limiting the number of
splits within each regression tree to 4, allowing for 4-way interactions between
covariates in a given tree. While generalized boosted models are powerful,
the parameter tuning is vital and takes substantially more time than random
forest parameter tuning.

In addition to the time-intensive parameter tuning, boosted CART is sen-
sitive to data outliers as sequential trees are trained to fit the residuals of the
prior model. Due to the constant focus on minimizing the residuals, boosted
CART is also prone to overfitting if not adequately reigned through param-
eter tuning. Lastly, because the individual trees in a generalized boosted
model are built one after another, building this model can be very time-
intensive; this contrasts a random forest where all of the individual trees are
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built in parallel and thus do not use information from the prior trees. Aside
from these significant but manageable flaws, generalized boosted models also
present many benefits.

As McCaffrey et al. [2005] note, a GBM inherits many of the benefits of
regression trees for propensity score estimation. For example, each individ-
ual regression tree is computationally quick and can handle many different
data types (continuous, ordinal, categorical, and missing values). Moreover,
McCaffrey et al. [2005] note that due to the invariant nature of regression
trees to one-to-one variable transformations, “whether we use age, log(age),
or age2, we get exactly the same propensity score adjustments”. Addition-
ally, including a large number of covariates or a covariates that are highly
correlated does not negatively impact the GBM model. Aside from the ben-
efits of regression trees, the boosting nature of a GBM allows the model
to capture main effects and produce a smooth fit [McCaffrey et al., 2005].
These countless advantages of a GBM motivate its use for propensity score
estimation.
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Chapter 4

Neural Networks for
Propensity Score Estimation

4.1 Motivation for Neural Networks

In the previous chapters, I detailed logistic regression and tree-based tech-
niques as potential models for predicting treatment assignment given pre-
treatment covariates. While popular, logistic regression requires specification
of the relationships and distributions of covariates prior to model building;
the need for variable specification prompted the use of a non-parametric
models. Tree-based methods such as random forest and boosted CART pro-
vided non-parametric alternatives for propensity score estimation methods.
However, many of the tree-based methods are sensitive to outliers and have
a tendency to overfit the data. To remedy the short comings of both lo-
gistic regression and tree-based methods, I propose neural networks as an
alternative method for propensity score estimation.

First proposed in 1944 by Warren McCullough and Walter Pitts, artificial
neural networks are an alternative class of machine learning methods capable
of modeling highly complex functions through a dense interconnected stream
of nodes. A neural network loosely mirrors the process of a human brain. The
human brain contains billions of neurons each of which intakes, processes, and
transfers electric signals. More specifically, a neuron intakes electric signals
through dendrites, processes the information in the neuron cell body, and
then converts the processed signals to a single output which is transferred
through the axon to the next neuron. The connection region between the
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axon of one neuron and the dendrites of another are called synapses. Human
learning occurs in the strengthening or weakening of these synaptic connec-
tions. This process of human learning can be partially simulated through an
artificial neural network (ANN) [Aggarwal, 2018].

A neural network consists of an interconnected sequence of nodes, repre-
sented by neurons, which intakes an observation’s feature vector and outputs
the desired prediction [Aggarwal, 2018]. To unwrap the mathematics under-
neath the madness, we must first start simple.

4.2 The Perceptron

The simplest neural network is called the perceptron. A perceptron is a
single-layer network where a set of inputs is directly mapped to an output
via a linear function of weighted edges and inputs.

Consider the situation where each observation in the training data is of
the form (x, z) where x = [x1, . . . , xp] representing a feature vector of length
p and z ∈ {-1,1} representing the observed binary classification label. In the
case of propensity score estimation, x denotes the vector of pre-treatment
covariates and z denotes the treatment indicator. Since x is of size p, the
input layer must contain p input nodes which transmit the features with
weighted edges, w = [w1, . . . , wp], to an output node. At the output node, we
calculate the linear function, w · x =

∑p
i=0wixi. Since this is a classification

problem, the final output, ẑ, is determined by the sign function defined below
which maps a real value to positive or negative 1. The sign function serves
as the activation function, here.

ẑ = sign{w · x} = sign{
p∑
i=0

wixi} (4.1)

Consider the following diagram representing the structure of a perceptron.
Note, the first input is 1, and 1∗w0 will always be constant, w0. w0 represents
the bias and is useful when the the distribution of the binary class variable is
highly imbalanced [Aggarwal, 2018]. In the diagram below, we see that each
input, xi, is weighted according to wi. Then, we sum the weighted inputs
where 0 is the activation threshold.

36



Activation
function

∑
w2x2

...
...

wpxp

w1x1

w01

inputs weights

Figure 4.1: Diagram of a perceptron. A feature vector, [x1, . . . , xp], is
weighted according to a weight vector, [w1, . . . , wp], with an additional bias
term represented by w0. We sum the weighted inputs and pass the result
through an activation function with a threshold of 0.

To determine the weights associated with each input, we must solve yet
another optimization problem. The goal of the perceptron algorithm is to
minimize the number of mis-classifications. More formally, the goal is to:

Minimizew

{ N∑
i=0

(zi − ẑi)2 =
N∑
i=0

(zi − sign{xi ·w})2

}
(4.2)

The utilization of gradient descent to minimize the loss function requires
a differentiable loss function. The gradient associated with equation 4.2 is a
non-differentiable function with a staircase-like structure. Thus, to use gradi-
ent descent, we must use a smooth approximation of the gradient [Aggarwal,
2018].

5 LSmooth =
N∑
i=0

(zi − ẑi)xi (4.3)

The weights in the network are updated as each data point, (xi, zi), travels
through. More specifically, when xi enters the network, the weights are
updated as follows.

w← w + α(zi − ẑi)xi (4.4)
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Note, that the weights are only updated when the error term (zi − ẑi) is
non-zero. The perceptron algorithm randomly cycles through all the train-
ing examples and updates the weights accordingly until convergence. Once
the algorithm reaches convergence, w · x = 0 defines the linear hyperplane
which best classifies the data [Aggarwal, 2018]. It follows that the percep-
tron algorithm will do well on data that is linearly separable and poorly on
data that is non-linearly separable. The perceptron algorithm’s inability to
model more complex data patterns motivates the use of multi-layer neural
networks.

4.3 Multi-Layer Neural Networks

A perceptron, as described above, contains only a single computational layer
which occurs at the output layer. In contrast, multi-layer neural networks
contain more than a single computational layer. In a multi-layer neural
network, the computations performed at each layer are not visible outside the
network; these intermediate computational layers are called ”hidden” layers.
Just as a perceptron, there are nodes within each visible and hidden layer.
Importantly, each node of one layer connects to every node of the following
layer. This creates a dense network where every node is interconnected.
Additionally, these connections are forward directional. In other words, the
output of the previous layer becomes the input of the following layer. This
property of successive layers feeding into one another is called a feed-forward
network [Aggarwal, 2018].

The output of each layer within a neural network can be represented as a
column vector with dimensionality determined by the number of nodes within
the layer. More specifically, if a neural network with k layers has respective
number of nodes in each layer l1, . . . , lk, then the output column vector of
each layer denoted h̄1, . . . , h̄k has dimension l1, . . . , lk. For instance, consider
the first layer which contains l1 nodes. Each of the l1 nodes will produce an
output which together can be represented as a column vector, denoted h̄1, of
dimension l1 × 1.

We can define the dimensions of a weight matrix W in terms of the
dimension of the previous and successive layers. Let W1 denote the matrix
of weights applied when connecting the input layer of dimension p to the
first hidden layer of dimension l1. Since each node must connect to every
node of the successive layer, W1 is a matrix of size p × l1. Similarly, the
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matrix of weights applied to the outputs of the ith hidden layer denoted Wi

has dimension li× li+1. Lastly, assume the neural network has size o output.
Then the dimension of the weight matrix connecting the final hidden layer
to the output layer of sizes lk and o respectively has dimension lk × o and
is denoted Wk+1. Let Φ denote an arbitrary activation function. We can
formalize the weighting and transformation process from layer to layer with
the following series of recursive equations.

h̄1 = Φ(W T
1 x) input to hidden layer (4.5)

h̄i+1 = Φ(W T
i+1h̄i) ∀i ∈ {1, . . . , k − 1} hidden to hidden layer (4.6)

o = Φ(W T
k+1h̄k) hidden to output layer (4.7)

As shown above, the output vector of each layer is determined by weight-
ing the inputs and then applying an activation function, Φ. In section 4.2, we
noted that the perceptron only gives us access to linear models when trying
to classify the data; the linearity restriction motivated the use of multi-layer
neural networks. Multi-layer neural networks allow access to non-linear mod-
els through the use of non-linear activation functions.

If we instead used a linear activation function (a.k.a. the identity func-
tion), Φ(∗) = ∗, the output of the neural network would reduce to a linear
combination of the inputs. Consider a network with a single hidden layer.
Let x denote a vector of inputs for layer i. The resulting output is h̄i.

h̄i = Φ(W T
i · x) = W T

i · x (4.8)

Similarly, the resulting output for the network is defined as follows.

h̄i+1 = Φ(W T
i+1 · h̄i) = W T

i+1 · h̄i (4.9)

The two equations can be composed in the following way when Φ is the
identity function.

h̄i+1 = W T
i+1 · Φ(W T

i · x) = W T
i+1(W T

i · x) (4.10)

Note, the output of the network, h̄i+1, can be fully represented as a linear
combination of the inputs.

In propensity score estimation, we need a method that allows us to cap-
italize on interactions and power relationships between various covariates.
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This motivates the use of a non-linear activation function for multi-layer
neural networks.

For the purposes of propensity score estimation, I will define Φ as the
Sigmoid function. The Sigmoid function maps inputs on the real line to
the interval (0,1) and thus is a logical choice for estimating probabilities as
in propensity score estimation. The Sigmoid function is defined as follows
where ∗ is an arbitrary input:

Φ(∗) =
1

1 + e−∗
(4.11)

4.3.1 Training a Neural Network with Backpropaga-
tion

In the case of a perceptron, we were able to use a stochastic gradient descent
algorithm to train the single-layer neural network. More specifically, we could
calculate the gradient and adjust the weight vector accordingly. However, in
the case of multi-layer neural networks, computing the gradient is difficult
due to the compositional nature of the loss function. To calculate the gra-
dient of a composition loss function, we use back propagation. In essence,
back propagation allows us to see how much of the total loss each node is
responsible for and update the weights accordingly. If a node is responsible
for a heavy loss, it makes intuitive sense to decrease the weight associated
with the given node.

So, we need a way to estimate how the total loss changes with respect
to a given weight wi. The change in loss with respect to weight is given by
the partial derivative, ∂L

∂wi
. If ∂L

∂wi
> 0, the loss increases as wi increases.

If ∂L
∂wi

< 0, the loss decreases as wi increases. We can update wi to w′i in
such a way that the loss will always decrease. Let λ denote a learning rate
parameter. More specifically,

w′i = wi − λ
∂L

∂wi
(4.12)

Note, that if ∂L
∂wi

> 0, then w′i will be smaller than wi. This is intuitively
sound as we want to decrease the weight associated with nodes which causes
the loss function to increase as wi increases. Similarly, if ∂L

∂wi
< 0, the updated

weight, w′i, will be larger than the original weight, wi. The same intuition
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applies: we want to increase the weights associated with the nodes which
cause the loss function to decrease.

In order to control the rate at which the neural network updates the
weights and converges on a final model, we introduce a hyperparameter λ.
λ is typically a small value between 0 and 1. Choosing a small λ will result
in a much longer training phase as the weights are barely changing through
each iteration. However, choosing a large λ could result in converging on a
sub-optimal set of parameters.

Now that we have a rule to update the weights (see equation 4.12), we
turn our focus to calculating ∂L

∂wi
. The main tool to use is the chain rule from

calculus. Let F = f(g(x)). The chain rule is as follows:

F ′ = f ′(g(x)) · g′(x) (4.13)

Using the uni-variate and multi-variate chain rule, we can propagate the
resulting loss backwards through the network to the initial layer. This tech-
nique allows us to see the loss attributable to a given node and update the
corresponding weight accordingly.

For a given weight wi, we find all possible paths from weight wi to output
ê. Using the multi-variate chain rule, we calculate the partial derivative of
the loss with respect the weight wi for each path. To obtain the overall
derivative of loss with respect to wi, we aggregate the partial derivatives
[Aggarwal, 2018]. We now consider a more concrete example.
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Figure 4.2: Multi-layer neural network to illustrate backpropagation

Consider all of the paths backwards from ŷ to w1 in Figure 4.2 above. In
order to calculate ∂L

∂w1
, we must trace each path and aggregate the partial

derivatives. The calculus is as follows:

∂L

∂w1

=
∂L

∂ê
· ∂ê
∂w1

(4.14)

∂L

∂w1

=
∂L

∂ê
·
(
∂ê

∂h21

· ∂h21

∂w1

+
∂ê

∂h22

· ∂h22

∂w1

+ · · ·+ ∂ê

∂h25

· ∂h25

∂w1

)
(4.15)

∂L

∂w1

=
∂L

∂ê
·
(
∂ê

∂h21

· ∂h21

∂h11

· ∂h11

∂w1

+
∂ê

∂h22

· ∂h22

∂h11

· ∂h11

∂w1

+ · · ·+ ∂ê

∂h25

· ∂h25

∂h11

· ∂h11

∂w1

)
(4.16)

∂L

∂w1

=
∂L

∂ê
·
(
∂ê

∂h21

· ∂h21

∂h11

+
∂ê

∂h22

· ∂h22

∂h11

+ · · ·+ ∂ê

∂h25

· ∂h25

∂h11

)
∂h11

∂w1

(4.17)

∂L

∂w1

=
∂L

∂ê
·
(
∂ê

∂h21

· ∂h21

∂h11

+
∂ê

∂h22

· ∂h22

∂h11

+ · · ·+ ∂ê

∂h25

· ∂h25

∂h11

)
x1 (4.18)

As we can see above, the computational complexity is already extremely
high with only 2 hidden layers. The number of paths from output to in-
put weight grows exponentially as the neural network gets deeper [Aggarwal,
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2018]. Due to the exponential path growth and the impracticality of com-
puting the gradient using calculus, scientists use a technique called dynamic
programming instead. Without detailing the specifics of dynamic program-
ming, Aggarwal [2018] summarizes the beauty of this technique nicely.

“Using dynamic programming to efficiently aggregate the prod-
uct of local gradients along the exponentially many paths in a
computational graph results in a dynamic programming update
that is identical to the multi-variable chain rule of differential
calculus.”

4.4 Pros and Cons of Neural Networks for

Propensity Score Estimation

Neural networks, while often thought of as black boxes, offer many bene-
fits in propensity score estimation. First, neural networks are a fully non-
parametric class of models. This means there is no need to specify inter-
actions, the order and transformations, or the distribution of variables a
priori. Just like the tree-based learners discussed in chapter 3, the absence
of prior assumptions prevents researchers from incorrectly specifying false
relationships between variables. The lack of prior assumptions is especially
important in situations where researchers do not have expert domain knowl-
edge and may lack information regarding relationships between explanatory
variables. Secondly, as Westreich et al. [2010] notes, neural networks are
highly skilled at dealing with high dimensional data. More specifically, when
treatment can be accurately predicted considering lots of explanatory vari-
ables (high-dimensional data) but can’t be accurately predicted using only a
few variables, a neural network should be the model of choice.

While neural networks boast many advantages, there are notable draw-
backs. First, training a neural network is more of an art than a science,
meaning there are few universal rules for parameters like number of hidden
nodes and learning rate [Westreich et al., 2010]. As such, choosing param-
eter values which avoid issues such as local minima and model overfitting
is extremely challenging to the non-expert. Secondly, after fitting a neural
network, the resulting weights have no accessible interpretation; the lack of
interpretation of weights is drastically different than the highly interpretive
results of β0 and β1 in logistic regression. While propensity score estimation
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prioritizes accuracy over interpretability, it is still a noteworthy drawback.
For instance, we may be interested in digging down into the impact of a
confounding variable on treatment assignment, however a neural network’s
lack of interpretability is an insurmountable barrier to do so.
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Chapter 5

Simulation and Results

The goal of this chapter is to simulate data with a known causal treatment
effect and use propensity score estimation theory to uncover the causal treat-
ment effect. Moreover, I look at sample size, strength of causal treatment
effect, correct specification of variable relationships, and unspecified con-
founding variables to investigate under what conditions logistic regression,
regression trees, random forests, generalized boosted models, and neural net-
works perform best.

In the following simulations, I compare the estimated average treatment
effects for each of the five propensity score estimation techniques (logistic
regression, regression trees, random forests, generalized boosted models, and

neural networks). All average treatment effects, ÂTE, and corresponding

standard errors, SE(ÂTE), are computed using Equations 1.7 and 1.8. The
simulations are conducted using the R package simcausal.

In conducting the simulations, I specify all variables present in the model
and their respective distributions. Moreover, I specify the treatment as-
signment mechanism and the structural equation that defines the causal
treatment-response relationship. In all simulations, I generate 50 different
data sets for a given simulation setting and use propensity score estimation
to obtain an estimated average treatment effect for each data set. Then, I
average the estimated average treatment effects over all 50 data sets to min-
imize estimation variability. In the first simulation, I compare the setting in
which each of the 50 data sets has a sample size of N = 100 to N = 10, 000.
In all other simulations, each of the 50 generated data sets has a sample size
of N = 100 due to computational limitations.
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5.1 Treatment Assignment Mechanism

In a randomized controlled trial, treatment assignment is determined by the
researchers, and thus the underlying treatment assignment mechanism is
known. However, in observational studies, the underlying treatment assign-
ment mechanism is unknown to researchers. Since we are in a simulation
setting, I will define the treatment assignment mechanism and then ‘hide’
the treatment mechanism when calculating the average treatment effect; in
essence, I want to see if propensity score estimation and stratification can
account for the withheld information within the treatment assignment mech-
anism.

I define the underlying equation which determines treatment assignment
as follows where e, f1, f2 are constants. Let (X1, X2) be distributed according

to a multivariate normal distribution where µ = [0.5, 1] and Σ =

[
2 1
1 1

]
. Let

V ∼ N(0, 1).
Let p denote the probability of treatment. As such,

Z =

{
1 (treatment), p = ee+f1X1+f2X2+V

1+ee+f1X1+f2X2+V

0 (no treatment)
(5.1)

Unless otherwise specified, let e = 0.5, f1 = 0.25, f2 = 0.75. I can re-write
the treatment selection equation with the constant values defined above as:

Z =

{
1 (treatment), p = e0.5+0.25X1+0.75X2+V

1+e0.5+0.25X1+0.75X2+V

0 (no treatment)
(5.2)

It is important to note that Equation 5.2 explicitly defines the relationship
between treatment assignment and covariates, X1, X2. However, equation 5.2
does not tell us anything about the relationship between the response variable
and covariates.

5.2 Simulation 1: Vary Treatment Effect Size

and Sample Size

Let Y denote the response variable of interest, X1, X2 denote pre-treatment
covariates, Z denote a treatment indicator variable, and U, V denote random
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noise. Let (X1, X2), U, V be independent. Independence means that knowing
the value of one random variable conveys no information about the value of
another.

For Simulation 1, the relationship between the response variable Y and
the predictor variables, Z,X1, X2, is defined as follows where b, c1, c2, d are
constants. It is important to recognize that a, b, c1, c2, d are population pa-
rameters and thus unknown outside of the simulation framework. As sci-
entists, the goal is to uncover the population level parameters of interest
through unbiased estimation.

Y = a+ bZ + c1X1 + c2X2 + dU (5.3)

Note, equation 5.4 explicitly defines the dependence of Y on covariates
X1, X2. The dependence of both treatment, Z, and response, Y , on co-
variates, X1, X2, is what confounds the relationship between treatment and
response. The confoundedness of treatment and response initially limits our
ability to make causal treatment effect claims.

In Equation 5.3, b is the underlying causal treatment effect as treatment
receipt for subject i (Zi = 1) necessarily causes Y to increase by b. Through
propensity score stratification and average treatment effect estimation, we try
to arrive at an unbiased estimate for b, the true causal treatment parameter.
For Simulation 1, let a = 1, c1 = 0.1, c2 = 2, d = 1. I will vary the treatment
effect b, so I will leave it arbitrary. We can plug these values into Equation
5.3 to obtain:

Y = 1 + bZ + 0.5X1 + 2X2 + U (5.4)

In the graph below, the x-axis denotes parameter value ATE under which
the data was generated; in other words, the x-axis denotes the value of b in

Equation 5.4. The y-axis represents the estimated ATE, ÂTE. Note, the
diagonal black line denotes perfect unbiased estimation of ATE. Each point

on the graph represents ÂTE over 50 simulated data sets. The vertical line
protruding from each point denotes a single standard error in either direction

of ÂTE.
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Figure 5.1: Varying the causal treatment effect size with N=100. Neural

networks and logistic regression compete for the least biased ÂTE. Note,

the black diagonal line denotes perfect unbiased ÂTE.

In Figure 5.1, we see that neural networks and logistic regression produce
similar treatment effect biases while generalized boosted models, random
forests, and regression trees perform significantly worse. Interestingly, as the
treatment effect size approaches 5, all methods except generalized boosted
models and random forests are able to uncover the treatment effect with
similar small biases.

Next, I once again vary the parameter value ATE with an increased sam-
ple size of N = 10, 000. I am interested in increasing the sample size 100-fold
due to my pre-concieved notion that neural networks perform increasingly
well (perhaps even outperform logistic regression) as sample size increases.
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Figure 5.2: Varying the causal treatment effect size with N=10,000. For large
treatment effects, neural networks just barely outperform logistic regression.
Notably, when ATE = 1, neural networks are slightly more variable than
logistic regression. Lastly, all standard error bars shrink dramatically com-
pared to N = 100; this is expected as sample size and standard error are
inversely proportional.

As shown in Figure 5.2, neural networks seem to outperform logistic re-
gression when the sample size is large, though the difference is minimal.

5.3 Simulation 2: Vary Pre-treatment Co-

variate Strength

In this simulation, I investigate the effect of increasing the coefficients at-
tached to the pre-treatment covariates. I hypothesize that the causal treat-
ment effect will be more difficult to estimate when the pre-treatment covari-
ates have a larger impact on the response variable. Why? In my intuition,
stronger pre-treatment covariates will cloud the relationship between treat-
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ment and response, thereby making it more difficult to estimate ATE.
The treatment selection mechanism is the same as in Simulation 1 (5.2).

That is,

Z =

{
1 (treatment), p = e0.5+0.25X1+0.75X2+V

1+e0.5+0.25X1+0.75X2+V

0 (no treatment)
(5.5)

However, the response relationship is now different. More specifically,
the ATE will stay constant (b = 2) while I vary the coefficients attached to
the pre-treatment covariates (c1, c2). The constant, a, will stay fixed at 1.
Mathematically, the response relationship is of the following form:

Y = 1 + 2Z + c1X1 + c2X2 + U (5.6)

Note: The distributions of Z,X1, X2, U are the same as defined in Simu-
lation 1 (5.2).

In varying c1, c2, I test the following values: c1 = c2 where c1 ∈ [0.05, 1,
2, 3, 4, 5, 6, 7, 8, 9, 10]. In reality, c1 and c2 need not be equal. However,
for simplicity sake, I chose to vary the strength where c1 = c2.

The graphical results are as follows. Note, ATE = 2, as denoted by the
horizontal black line.
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Figure 5.3: Here, I investigate how well each propensity score estimation
method is able to uncover the ATE as the strength of pre-treatment covariates
increases. As the strength of the pre-treatment covariates increases, logistic

regression, neural networks, and GBMs produce smaller biases in ÂTE than
random forests and regression trees.

5.4 Simulation 3: Model Misspecification

In the prior simulations, logistic regression consistently estimated the treat-
ment effect with the least bias of all propensity score estimation methods.
However, all variable relationships and functional forms were correctly spec-
ified in those simulations; in other words, the underlying treatment assign-
ment mechanism matched the logistic model specification. As mentioned in
Section 2.3, parametric models including logistic regression require proper
variable specification to achieve optimal predictive performance. As such,
the purpose of Simulation 3 is to investigate the effect of model misspecifi-
cation on the ability of a propensity score estimation method to produce an
unbiased estimate for the ATE.
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Model misspecification can occur when building a model to estimate the
propensity scores (i.e., logistic regression, CART methods, or neural net-
works). Misspecification includes incorrectly specifying the functional form
of a covariate, excluding an interaction between covariates, or excluding a
covariate all together. Notably, all propensity score estimation methods will
suffer should the researcher leave out an important pre-treatment covariate.
However, only logistic regression will suffer if a researcher incorrectly specifies
the functional form of a covariate or excludes an interaction between covari-
ates. Logistic regression uses maximum likelihood estimation to estimate
the β coefficients under the pre-specified model. As such, incorrect model
assumptions can lead to sub-optimal models. In contrast, non-parametric
models including regression trees, random forests, boosted CART, and neu-
ral networks look to the data to determine optimal functional forms of and
interactions between variables, and thus will be unaffected by misspecifica-
tion of covariate functional form and interaction.

5.4.1 Simulation 3a: Unspecified Interaction Term

First, I add an interaction term to the underlying treatment assignment
mechanism and purposefully leave the interaction out of the propensity score
model. More specifically, the treatment assignment mechanism is of the
following form where f3 is an unspecified constant:

Z =

{
1 (treatment), p = e0.5+0.25X1+0.75X2+f3X1X2+V

1+e0.5+0.25X1+0.75X2+f3X1X2+V

0 (no treatment)
(5.7)

The response equation has no interactions and is of the same form as in
Section 5.2.

Y = 1 + 2Z + 0.5X1 + 2X2 + U (5.8)

Now, this is the important part. In specifying the logistic regression
model, I do not including the interaction term, X1 · X2. More specifically,
the logistic regression model is of the following form:

ln

(
ei

1− ei

)
= β0 + β1X1i + β2X2i + β3Vi (5.9)

52



Figure 5.4: Here, I investigate the effect of an interaction term present in
the underlying treatment assignment mechanism however excluded from the

propensity score model. As shown, the bias of ÂTE obtained via logistic
regression increases fairly drastically as the withheld interaction term in-

creases in strength. In contrast, the bias of ÂTE obtained via random forest
decreases as the strength of the interaction increases. In this circumstance,
it is clear that models whose structure can easily incorporate unspecified
interactions produce significantly lower ATE biases.

In Figure 5.4, logistic regression performs increasingly worse as the strength
of the interaction term increases thereby illustrating the main pitfall of logis-
tic regression as a method for propensity score estimation. In contrast, the

ÂTE obtained from regression trees, generalized boosted models, and neural
networks propensity score estimation methods do not drastically change with
the increase in interaction term. Interestingly, when we use random forests
to model propensity scores, the bias of the average treatment effect decreases
as the strength of interaction increases. Prior literature by Setoguchi et al.
[2008] agrees with the stability of neural networks and the decrease in per-
formance of logistic regression when there is an unspecified interaction term
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present in the underlying treatment assignment mechanism.

5.4.2 Simulation 3b: Covariate Exclusion

In propensity score estimation, another form of model misspecification is the
failure to specify all pre-treatment covariates; failure to do so should impact
all models. In this simulation, I investigate the effect of leaving out a pre-
treatment covariate from the propensity score estimation model on the bias

of ÂTE.
In order to have adequate covariates to model while simultaneously leav-

ing one out, I introduce another covariate to the model. Consider a covariate,
W. Let W ∼ Bernoulli(p = plogis(−0.5) ≈ 0.38).

The underlying treatment selection is defined as follows where f4 is an
unspecified constant:

Z =

{
1 (treatment), p = e0.5+0.25X1+0.75X2−f4W+V

1+e0.5+0.25X1+0.75X2−f4W+V

0 (no treatment)
(5.10)

The response equation is defined as follows:

Y = 1 + 2Z + 0.5X1 + 2X2 − 0.3W + U (5.11)

The logistic model is defined as follows. Note, W is not specified in the
model.

ln

(
ei

1− ei

)
= β0 + β1X1 + β2X2 + β3V (5.12)

The random forests, generalized boosted models, and neural networks
are trained using only X1, X2, V . Again, we essentially withhold W from the
propensity score model.

To test how excluding a covariate affects ATE estimation, I vary the

coefficient preceding W , f4. More specifically, I calculate ÂTE using the four
propensity score estimation techniques (logistic regression, regression trees,
generalized boosted models, and neural networks) for each of the following
values of f4: f4 ∈ [0.05, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5].
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Figure 5.5: Here, there exists a covariate in the treatment assignment mecha-
nism which is not present in the propensity score model. We see in the figure
above that, as the strength of the unspecified covariate increases, GBMs yield
smaller biases for the ATE than alternative methods. Additionally, logistic
regression and neural networks yield fairly low biases for the ATE, however
notably larger biases compared to GBMs.

As shown above in Figure 5.4, interestingly, GBMs mostly yield the small-

est bias for ÂTE as compared to other propensity score estimation tech-
niques. However, once again we see that logistic regression and neural net-

works yield similar low-biased results. Notably, the ÂTE produced from the
GMB model is increasingly variable as compared to logistic regression and
neural networks.

5.5 Conclusions and Takeaways

Historically, randomized controlled trials have stood as the gatekeeper to
a researcher’s ability to declare causal treatment-response relationships. In
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a randomized controlled trial, there are, on average, no pre-existing differ-
ences between the treatment groups; the covariate balance between treatment
groups is a result of a randomized allocation of treatment. While randomized
controlled trials open doors for causal claims, they are often impractical or
unethical. As such, researchers are often confined to observational studies
where there exist systematic differences in pre-treatment covariates between
treatment groups. Instead of abandoning ship, propensity score stratifica-
tion offers a statistical method by which we can obtain an unbiased estimate
for the average treatment effect [Rosenbaum and Rubin, 1984]. In the most
broad sense, propensity score stratification divides the subjects into strata
according to pre-treatment similarity. So long as we have pre-treatment co-
variate balance between treatment groups within each strata, we can estimate
an unbiased treatment effect for each strata. Finally, Rosenbaum and Rubin
[1984] show that averaging the individual strata treatment effects yields an
unbiased average causal effect of treatment on response.

While the theory of propensity score stratification is fascinating, effective
estimation of the propensity scores is vital to thereby obtain strata with pre-
treatment covariate balance. In propensity score estimation, we are trying
to predict the probability by which a subject will receive treatment given a
vector of pre-treatment characteristics. Historically, propensity scores have
been estimated via logistic regression, a parametric model that requires re-
searchers to pre-specify relationships between and the functional form of
covariates. However, without sufficient domain knowledge and statistical
modeling capabilities, it is very difficult to correctly specify a logistic model.
As such, I motivate the use of regression trees, random forests, generalized
boosted models, and neural networks as alternative methods for propensity
score estimation; these are non-parametric models and thus do not require
pre-specification of covariate functional forms and interactions. To investi-
gate the ability of each model to produce an unbiased estimation for the
average treatment effect, I turn to simulation.

In all simulations, I, as the simulator, determine the underlying treatment
assignment mechanism and treatment-response relationship. To determine
the most effective propensity score estimation method, I test the effect of
sample size, pre-treatment covariate strength, model misspecification, and
covariate exclusion on ability to uncover the average treatment effect. As
shown in Figure 5.1, logistic regression and neural networks outperform the
alternatives when the propensity score model is perfectly specified with a
sample size N = 100. When we increase the sample size to N = 10, 000 and
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maintain perfect specification propensity score model, we again see logistic
regression and neural networks outperform alternative methods.

Next, I investigate the effect of increasing the influence of pre-treatment
covariates on treatment assignment. As the pre-treatment covariates become
increasingly important in determining one’s response, logistic regression pro-
duces the least biased ATE estimation. However, GBMs and neural networks

both produce an ÂTE with only a slight increased bias compared to that of
logistic regression as the covariate strength increases.

I then turn my focus to the effect of propensity score model misspecifica-
tion on the ability of an estimation method to uncover the average treatment
effect. First, I consider the presence of an interaction term in the underlying
treatment assignment mechanism but the exclusion of such interaction term
in propensity score model building. In the situation of an unspecified interac-
tion term, neural networks, random forests, and GBMs produce increasingly
low biases for the ATE as the strength of the interaction term increases. No-
tably, logistic regression does not perform well under the circumstances of an
unspecified interaction term. Second, I consider the presence of a covariate
in the underlying treatment effect mechanism but absence of such covariate
in propensity score model building. In the setting of an excluded covariate,
GBMs produce the least biased ATE estimate, however neural networks and
logistic regression perform only slightly worse.

So, given the results above, if someone were to ask me “What propensity
score estimation method is most effective at uncovering the average treatment
effect?” I would reply with excitement, ”Well, it depends!” More specifically,
if the researcher is confident in their domain knowledge and ability to model
interactions between variables and the correct functional forms of variables,
I suggest using logistic regression for propensity score estimation. However,
without sufficient domain and/or statistical knowledge, I suggest using neural
networks for propensity score estimation.
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