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Abstract

Modern healthcare systems remain largely reactive, addressing
disease only after symptoms appear. At the same time, genomic
sequencing, wearable sensors, and electronic health records (EHRs)
now make it possible to track individual risk continuously. CoralMD
is a prototype multimodal dashboard that integrates three data
streams, genomic variants, physiological signals from wearables,
and EHR data, into a single, interpretable view of patient risk. In-
stead of building a highly optimized black box model, CoralMD uses
a transparent, rule based scoring scheme and narrative visualiza-
tions to surface how each stream of data contributes to future risk
across four domains (cardio & cerebrovascular, metabolic, neurode-
generative, and cancer). The system is implemented as a Streamlit
application with patient and clinician facing views, backed by a
small specifically curated synthetic case study dataset that mimics
realistic encounters and variant annotations to display the potential
of the prototype. This paper describes the motivation, system archi-
tecture, data design, and heuristic risk model underlying CoralMD,
presents a case study illustrating how the dashboard supports for-
ward reasoning, and reflects on ethical challenges around risk visu-
alization, normalization, and bias. All towards the effort of shifting
healthcare to a more individualized and proactive system.
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1 Introduction

Cancer, cardiovascular disease, neurodegenerative disorders, and
diabetes are among the leading causes of death in the United States.
Yet care delivery for these conditions is still mostly reactive. Clini-
cians treat disease after it has been diagnosed rather than acting
early based on trajectories of risk. The core promise of personalized
or “precision” medicine is to reverse this pattern by combining
genomics, continuous physiology measures, and clinical history to
anticipate disease and intervene early [3, 16].

In practice, this vision has not yet been fully realized or imple-
mented at the point of care. Clinical workflows remain fragmented
across institutions and data systems. Genomic reports may live in
one portal, Apple Watch or Fitbit data in another, and EHR data in
yet another. Even when machine learning models are available, they
are often tuned for accuracy rather than interpretability, making it
difficult for clinicians to understand why a model recommends an
action or if they should trust its outputs in these high stake envi-
ronments. The result is a gap between increasingly rich data about
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individuals appearing all over the place and the tools clinicians
actually have to reason with that data lagging behind.

CoralMD is an attempt to explore what a more proactive, mul-
timodal system could look like at the prototype level. The project
takes inspiration from “Medicine 3.0”, a phrase popularized by
longevity scientist, Peter Attia to describe a shift from reactive,
disease centered care to proactive, prevention focused care, all
grounded in long term risk trajectories [1]. Rather than striving for
a production ready platform right now, CoralMD focuses on three
goals:

(1) Integrate multiple data streams, genomics, wearables,
and EHR, into a coherent data model and user interface.

(2) Provide transparent, explanation first risk estimates
built from simple, inspectable heuristics rather than a large
black box model.

(3) Investigate ethical and representational questions around
how risk is visualized, compared, and communicated to clin-
icians and patients.

The resulting system is a Streamlit dashboard with separate
patient and practitioner views and a central “Storyline” screen that
summarizes how inherited baseline, clinical history, and everyday
behavior push risk up or down in four disease domains. Under
the hood, a tight multimodal scoring function uses EHR diagnoses
and labs, a number of handpicked genetic variants, and wearable
summaries (steps, sleep, resting heart rate, heart rate variability) to
produce domain level scores normalized to the unit interval.

Because there is no publicly available dataset that jointly contains
dense genomics, wearables, and EHR for the same individuals, the
current CoralMD prototype uses a synthetic case study dataset
designed to showcase realistic patterns and use cases. All while
the architecture is designed to scale to real world sources such as
MIMIC-1V, ClinVar, and gnomAD (which will be implemented in
future work). Thus, the emphasis in this capstone project is on
multimodal integration, interpretability, and ethical visualization,
not on maximizing predictive performance (yet).

2 Background and Related Work

Personalized medicine has increasingly shifted toward the inte-
gration of multimodal health data, including genomic sequences,
wearable sensor streams, and EHRs, to create forward looking,
individualized risk predictions. The related work that motivated
CoralMD falls into four themes: (1) clinical trajectory prediction,
(2) automation and human/AlI collaboration, (3) decision support
models for specific workflows, and (4) challenges of interpretability,
fairness, and multimodal integration.
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2.1 AI and Data Driven Clinical Trajectory
Prediction

A growing body of work models disease trajectories rather than
static outcomes, emphasizing quality of life and early intervention.
Hou et al. propose a hybrid CNN-GRU model for real time sepsis
prediction that updates estimates every two hours to distinguish
between fast decline and slow recovery phenotypes [8]. This phe-
notype centered approach illustrates how real time physiological
signals can enable actionable early interventions, an idea central to
CoralMD’s focus on trajectory aware risk models.

Du et al. extend this idea with a graph based representation of
intensive care unit (ICU) patient state, embedding relationships
between organs, interventions, and outcomes to support “what
if” reasoning [4]. Trevena et al. similarly construct a digital twin
framework that maps patient pathways into a directed acyclic graph
stored in Neo4j, enabling exploratory simulation of physiological
responses [17]. Together, these works highlight the importance
of modeling how health evolves over time, motivating CoralMD’s
storyline and domain based view of risk.

2.2 Automation, Clinical Workflow Support,
and Human/AI Collaboration

A second theme focuses on the use of Al and robotics to automate
clinical tasks while maintaining clinician control. Huang et al. de-
velop an imitation learning based robotic ultrasound system capable
of following clinical imaging protocols autonomously [9]. Bernardes
et al. create a robotic needle trajectory correction mechanism that
compensates for soft tissue deflection in MRI guided procedures,
achieving millimeter level precision without reinsertion [2]. These
systems demonstrate an emerging paradigm of closed loop, data
responsive systems that assist rather than replace human expertise.

Sanz-Pena et al. present a fully 3D printed ankle exoskeleton that
delivers individualized torque assistance based on patient specific
gait patterns [15]. Their work underscores the value of adaptable,
user specific assistive technology, an insight that CoralMD adopts
by tailoring risk explanations to each individual’s genomic, clinical,
and behavioral context.

2.3 Clinical Decision Support and Risk Focused
Modeling

Other work focuses on predictive modeling for targeted clinical
decision support. Zhu et al. develop a transition flow model to
predict 7 and 30 day revisit risk for elderly diabetes patients with fall
related injuries, helping identify intervention points [18]. Eskandari
and Lee apply Markov Decision Processes to optimize postoperative
care plans after joint replacement, integrating performance and
patient reported outcomes to determine cost effective rehabilitation
schedules [6]. These models demonstrate how structured clinical
data can reveal decision relevant patterns, mirroring CoralMD’s
emphasis on actionable contributions rather than opaque scores.
Li et al. examine system level decision making through an op-
timization model that helps hospitals allocate resources between
in person and evisit services [13]. Their results show how digital
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health tools can improve efficiency and accessibility, contextualiz-
ing how a system like CoralMD would need to fit into real clinical
workflows.

2.4 Ethical, Interpretability, and Generalization
Challenges

Across these studies, several challenges recur. High performing
models are often opaque, limiting clinician trust. Datasets are fre-
quently institution specific or demographically skewed, raising
concerns about fairness and generalization. And very few systems
attempt true multimodal integration. Most focus on either physio-
logical signals, robotic control, or clinical outcomes in isolation.

CoralMD responds to these gaps in three ways. First, instead
of a deep neural network, it uses a deliberately simple, rule based
risk model whose logic can be inspected line by line. Second, it
foregrounds interpretability and uncertainty in the U, using narra-
tive explanations and tables rather than single traffic light scores.
Third, it proposes an architecture able to ingest genomic, wearable,
and EHR data in parallel, even though the current prototype uses a
synthetic case study rather than full scale clinical data.

3 System Design and Implementation

This section describes the current CoralMD implementation: the
overall architecture, the dashboard views, and the underlying mul-
timodal risk model.

3.1 Architecture Overview

CoralMD is implemented as a Streamlit app with multiple pages.
Figure 1 summarizes the data and component flow.

e Dataingestion layer. Three CSV files (geneFive.csv, ehrFive.csy,
wearFive. csv) provide synthetic genomic, EHR, and wear-
able data for a small panel of five cases. Each file is loaded
into a pandas DataFrame and passed to specific processing
functions.

¢ Risk modeling layer. The module ml_models.py imple-
ments a toy multimodal risk function, compute_multimodal_risk,
which aggregates scores from EHR diagnoses and labs, ge-
nomic variants, and wearable summaries into four domain
level risk scores and an overall score.

e Visualization layer. The module visualizations.py uses
Plotly to render time series plots, bar charts of domain scores,
contribution tables, and simple narrative text blocks. These
components are shared across pages so that the same under-
lying risk object can be explored from different angles.

o App pages. The top level file app. py coordinates navigation
between Streamlit pages: Patient Home, Practitioner Home,

EHR Explorer, Wearables Explorer, Genomics Explorer, and
Storyline View.

3.2 Dashboard Views

Patient Home. The Patient Home page provides a simple entry
point for a patient (or instructor) to select one of the synthetic pa-
tients and view a concise summary of their data. The page surfaces
demographic information, recent wearable statistics (average steps,
sleep, resting heart rate, HRV), and high level risk scores. In the
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Figure 1: High level architecture of the CoralMD prototype.
Synthetic genomic, EHR, and wearable CSV files feed into a
rule based multimodal risk model and Streamlit visualization
layers.

current prototype, patients cannot upload their own data, but the
Ul is designed to support that extension.

Practitioner Home. The Practitioner Home page is oriented around
summarizing multiple patients at once. For this course project, it
uses a local SQLite database to create risk scores and notes across
sessions, and then presents a table of patients with filters and links
into deeper views. For the selected patient, it shows tabbed sum-
maries for EHR, genomics, physiology, and storyline notes, mirror-
ing the information hierarchy of the Storyline View.

EHR Explorer. The EHR Explorer focuses on diagnoses and labs.
For a given synthetic patient, it displays a list of encounters (e.g.,
annual physical, overweight consultation, borderline hypertension),
along with lab values such as LDL cholesterol, systolic and diastolic
blood pressure, and HbA1c. Time series plots show how key labs
have evolved across encounters, highlighting patterns like rising
LDL over time.

Wearables Explorer. The Wearables Explorer shows daily steps,
sleep hours, resting heart rate, and HRV over a two week window
(Figure 2). Summary metrics emphasize the average number of
steps per day (around 4,700 for the case study patient), average
sleep (about 5.8 hours), and elevated resting heart rate. These views
help motivate why wearables are a valuable complement to EHR
and genomics for ongoing risk monitoring.

Genomics Explorer. The Genomics Explorer exposes a small ta-
ble of handpicked variants for each synthetic patient, including
1s7903146 (TCF7L2), rs9939609 (FTO), rs2228671 (LDLR), rs2819742
(APOE), rs17782313 (MC4R), and rs5186 (AGTR1). For each variant,
the table lists the gene, a qualitative effect label (pathogenic, likely
pathogenic, benign), a pathogenicity score between 0 and 1, and
the associated condition (e.g., type 2 diabetes susceptibility, obesity
risk, elevated LDL cholesterol, Alzheimer’s disease susceptibility,
hypertension risk).
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Summary metrics

Figure 2: Wearables Explorer view showing daily steps, sleep,
resting heart rate, and HRYV for the synthetic case study pa-
tient.

How each data stream pushes each disease domain up or down (toy deltas)

Figure 3: Storyline View summarizing how genomics, EHR,
and wearables contribute to domain level risk for the syn-
thetic case study patient.

Storyline View. The Storyline View is the central interpretability
feature of CoralMD. It aggregates scores from all three modalities
and presents them as:

e a stacked bar chart showing how each data stream (EHR,
genomics, wearables) pushes each disease domain up or
down;

e a factor level table listing which diagnoses, labs, variants,
and wearable features contributed to risk;

e anarrative explanation organized into three phases, inher-
ited baseline, clinical snapshot, and everyday behavior, with
changes in domain risk shown as delta values; and

e asmall “what if sandbox” that lets the user toggle hypotheti-
cal changes (e.g., bringing LDL < 130 mg/dL or increasing
steps above 7,000/day) and see how domain scores would
change under the toy model.

4 Data

CoralMD is designed with real multimodal datasets in mind, but
the current implementation uses a small synthetic dataset for a case
study patient. This section explains both the design goals and the
concrete data used in the prototype.
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4.1 Design Goals and Real World Sources
In a full deployment, CoralMD would draw on three types of data:

e Genomic data from genotype arrays or whole genome se-
quencing, annotated with resources such as the GRCh38
reference, 1000 Genomes, ClinVar, and gnomAD [11, 12].

e Wearable data from devices like Apple Watch or Fitbit,
including heart rate, step counts, sleep, and heart rate vari-
ability [7].

o EHR data from hospital information systems, such as the
MIMIC-1V database of de identified ICU patients [10], which
provides demographics, diagnoses, encounters, and labora-
tory measurements.

Because no single dataset combining all three modalities is pub-
licly available for the same individuals, the current version of
CoralMD uses synthetic data shaped by these sources rather than
directly using them.

4.2 Synthetic Case Study Dataset

Three small CSV files encode multimodal data for a single patient
and a few additional placeholder rows.

Wearable data. The file wearFive.csv contains 14 days of daily
summaries with columns: date, steps, sleep_hours, resting_hr,
and hrv. For the main case study patient, the average number of
steps per day is approximately 4,737, average sleep is 5.8 hours,
resting heart rate is around 80 bpm, and HRV averages in the low
30s. These values place the patient below common activity targets,
with short sleep and slightly elevated resting heart rate.

EHR data. The file ehrFive.csv encodes four encounters for
subject 9, including an annual physical, a visit labeled “Overweight”,
and two visits related to elevated blood pressure and borderline hy-
pertension. Each row includes subject_id, age, gender, encounter_id,
encounter_date, diagnosis, lab_name, and lab_value. Lab val-
ues include LDL cholesterol (ranging from 125 to 155 mg/dL), HbA1c
(5.4-5.8%), BMI (28.5), and systolic/diastolic blood pressure. These
features are chosen to capture common cardiometabolic risk factors
in a concise format.

Genomic data. The file geneFive. csv lists six variants. TCF7L2
(rs7903146), FTO (rs9939609), MC4R (rs17782313), and LDLR (rs2228671)
are labeled as pathogenic or likely pathogenic for type 2 diabetes
susceptibility, obesity risk, or elevated LDL cholesterol. An APOE
variant is labeled benign with low pathogenicity, representing base-
line Alzheimer’s susceptibility, and an AGTR1 variant contributes
to hypertension risk. Each row provides variant_id, gene, effect
(pathogenic vs. likely pathogenic vs. benign), a pathogenicity_score
between 0 and 1, and a textual condition.

4.3 Data Flow in the Prototype

Within the Streamlit app, these three tables flow through the fol-
lowing steps:
(1) Data are loaded into pandas DataFrames and normalized
(column names lowercased, dates parsed).
(2) EHR rows are grouped by patient and encounter; wearable
rows are sorted by time and restricted to the most recent 30
days.
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(3) The risk model functions in m1_models. py compute domain
level scores from each modality and then aggregate them.

(4) Visualization functions in visualizations.py use the re-
sulting scores and raw data to render plots, tables, and nar-
ratives on the dashboard pages.

Although the dataset is small, using realistic column names and
value ranges makes it straightforward to swap in real data in the
future without changing the modeling code.

5 Multimodal Risk Model and Analysis

Because CoralMD is an early stage prototype, the “analysis” in this
write up focuses on the design and behavior of the toy multimodal
risk model, along with a qualitative case study, rather than on large
scale statistical measures.

5.1 Toy Heuristic Multimodal Risk Model

The function compute_multimodal_risk in ml_models.py cre-
ates scores from three helper functions:

e _score_metabolic_from_ehr(df_ehr), which uses diag-
noses and labs,

e _score_from_genomics(df_gen), which uses variant level
annotations, and

e _score_from_wearables(df_wear), which uses recent steps,
sleep, resting heart rate, and HRV.

Each helper function returns contributions for four domains:
cardio & cerebrovascular, metabolic, neurodegenerative, and cancer.

EHR based scoring. The EHR scoring function normalizes column
names and then:

e searches diagnosis strings for keywords like “overweight”,
“obesity”, “prediabetes”, and “type 2 diabetes”, adding increas-
ing weights to the metabolic domain;

e extracts lab values for LDL cholesterol and HbA1c and adds
additional metabolic risk if LDL is > 130 mg/dL or HbAlc is
in the prediabetic (5.7-6.4%) or diabetic (> 6.5%) range.

This scheme encodes a simplified version of clinical reasoning:
multiple moderately abnormal findings can accumulate into sub-
stantial metabolic risk.

Genomics based scoring. The genomics scoring function looks at
the variant table and:

o defines a high impact mask as any variant with pathogenicity
score > 0.8 or an effect label containing “pathogenic”;

e increments the metabolic score if any high impact variant is
associated with diabetes or obesity;

e increments the cardio & cerebro score if any high impact
variant is associated with coronary disease or LDL choles-
terol;

e increments the neurodegenerative score for Alzheimer’s re-
lated variants; and

e applies additional gene level, meaning changes occur if cer-
tain genes (APOE, LDLR, PCSK9, APOB, TCF7L2, FTO, MC4R)
are present.

Wearable based scoring. The wearables scoring function first
restricts to the most recent 30 days (if date information is available)
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and then computes mean daily steps, sleep, resting heart rate, and
HRV. It applies simple thresholds such as:
e steps < 4000 = increase metabolic and cardio & cerebro
risk;
e steps between 4000 and 7000 = modest increases;
e average sleep < 6 hours = increase metabolic and neurode-
generative risk;
e resting heart rate > 80 bpm or > 90 bpm = increase cardio
& cerebro risk; and
e HRV < 25ms = small increases in cardio & cerebro and
metabolic risk.

Aggregation and normalization. The domain scores from EHR,
genomics, and wearables are summed and then divided by hand
tuned maximum values (e.g., 12 for cardio & cerebro, 10 for meta-
bolic) to produce normalized scores between 0 and 1. The overall
risk score is the mean of the four domain scores.

5.2 Case Study: Synthetic Patient - Johnny Cash

For the main synthetic patient (nicknamed Mr. Cash) with the
data described in Section 4. The model produces the following
normalized risk scores for each respective chronic disease category:

e cardio & cerebro: = 0.71,
e metabolic: 1.00 (saturating the toy scale),
e neurodegenerative: ~ 0.69, and
e cancer: 0.00.
The overall risk score is therefore around 0.60 on a 0-1 scale. In
the Storyline View, these scores are presented as the starting point
for a narrative explanation.

Narrative breakdown. The narrative explanation divides contri-
butions into three phases:

Inherited baseline. Genomic variants in TCF7L2, FTO, MC4R,
and LDLR raise baseline metabolic risk and modestly elevate
cardio & cerebro and neurodegenerative domains.

Clinical snapshot. EHR diagnoses of overweight and border-
line hypertension, combined with rising LDL and a slightly
elevated BMI, further increase metabolic and cardio & cere-
bro risk.

Everyday behavior. Wearable data indicate below target ac-
tivity (around 4,700 steps/day), short sleep (5.8 hours), and
resting heart rate around 80 bpm, pushing metabolic risk to
the top of the toy scale and nudging cardio & cerebro and
neurodegenerative domains upward.

Importantly, cancer risk remains at baseline, as neither the vari-
ants nor the EHR or wearable features in this toy dataset directly
relate to cancer.

What if sandbox. The what if sandbox in the Storyline View al-
lows the user to toggle hypothetical improvements, such as increas-
ing steps to at least 7,000/day or lowering LDL below 130 mg/dL.
Under the toy model, these changes reduce the metabolic and car-
dio & cerebro scores, giving a qualitative sense of which levers
(physical activity, lipids, weight) are most influential.

5.3 Limitations of the Current Analysis

The current analysis has clear limitations:
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o The multimodal risk model is rule based and hand tuned, not
trained from large datasets.

e The dataset is small and synthetic, so no claims are made
about real world predictive performance.

o The normalization constants and thresholds are illustrative
and would require clinical validation.

o There is no formal user study assessing whether clinicians
find the explanations helpful.

Nevertheless, the prototype fulfills its primary goal for this
course: it demonstrates how heterogeneous data streams can be
combined into a single, interpretable risk narrative and surfaces key
ethical questions about how risk is visualized and communicated.

6 Ethical Considerations

Designing CoralMD raised ethical questions not only about which
data to use but also about how to represent risk and comparison.

6.1 Visualizing Risk Without Over Persuading

Mahony and Hulme’s analysis of the IPCC’s “burning embers” di-
agram [14] shows how a seemingly neutral risk visualization can
become a powerful rhetorical device. By choosing particular color
scales and thresholds, the diagram helped shape public and policy
debates about climate danger. Their work underscores that risk
visualizations are never purely descriptive; they encode aesthetic
and moral decisions.

In CoralMD, this insight motivated several design choices. The
dashboard deliberately avoids traffic light style color codes or single
“risk scores” that might implicitly tell clinicians what to do. Instead,
domain scores are shown on a muted scale with clear uncertainty
and are accompanied by textual explanations and factor level tables.
The goal is to support interpretation, not to enforce consensus or
dictate action.

6.2 Comparison, Normalization, and “Normal”
Bodies

Dumit and de Laet’s “Curves to Bodies” [5] traces how growth
charts, calorie tables, and biomedical curves do more than measure
individuals: they construct norms and define which bodies count
as healthy or deviant. Presenting a single reference curve can hide
important variations across populations and lead to stigmatizing
interpretations.

CoralMD confronts this problem by emphasizing within person
trajectories and contextualized explanations rather than rigid com-
parisons to a single “normal” population. For example, the Storyline
View focuses on how a patient’s own risk changes under differ-
ent scenarios, rather than ranking them against a fixed percentile.
Future versions of the system could incorporate explicit fairness
checks across demographic groups and report uncertainty intervals
for risk scores to avoid overconfident claims.

6.3 The Stakes of Precision and Transparency

Both Mahony & Hulme and Dumit & de Laet highlight how mis-
leading or oversimplified visualizations can have real world conse-
quences. In personalized medicine, those consequences may involve
treatment decisions or long term patient anxiety. For this reason,
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CoralMD treats each data comparison and visualization choice as a
moral decision. The toy risk model is transparent by design. Clini-
cians (and patients who care/are able to) can inspect the code to
see how scores are computed. Future work would need to extend
this transparency to more sophisticated models, for example by
using after the fact explanation methods or inherently interpretable
architectures.

6.4 Predictive Power as Social Power

Finally, any system that predicts disease risk wield social power.
It can influence which patients receive attention, how resources
are allocated, and how individuals see their own health trajectories.
Following the warnings from Mahony & Hulme and Dumit & de
Laet, CoralMD positions itself not as an oracle but as a collabora-
tor. Its design aims to empower human reasoning through clearer
representations of data, explicit acknowledgment of uncertainty,
and resistance to oversimplification.

7 Conclusion and Future Work

CoralMD is a prototype exploration of what a multimodal, inter-
pretable, preventive medicine dashboard could look like. By com-
bining synthetic genomic variants, EHR encounters and labs, and
wearable summaries into a single Storyline View, the system demon-
strates how heterogeneous data can be woven into a coherent nar-
rative that highlights modifiable levers of risk.

Although the current risk model is intentionally simple and the
dataset is small, the project contributes:

e a concrete architecture for integrating genomics, wearables,
and EHR data;

e a heuristic multimodal scoring function that decomposes
risk by domain and modality; and

e an ethics informed visualization design that foregrounds
interpretability and resists oversimplified traffic light risk
scores.

Future work would follow along three directions. First, integrat-
ing real multimodal datasets would allow training and validating
more sophisticated models while preserving interpretability. Sec-
ond, deploying CoralMD in a cloud environment (potentially in
AWS) with secure data handling would make it accessible beyond
the local development environment. Third, conducting user studies
with clinicians and patients could empirically evaluate whether
the Storyline View and what if sandbox help users reason more
effectively about risk and prevention.

Ultimately, the goal is not just to build another dashboard, but to
clarify what ethically responsible, data driven personalized medicine
might look like in practice, and how data science tools can sup-
port, rather than replace, human judgment in the clinic, all gearing
towards an effort of overhauling the attitude of our healthcare
system.
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