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Abstract

This thesis is an exploratory analysis of an SEIRMD epidemic model
created by professors at the Claremont Colleges and applied to Los Angeles
county COVID-19 data. The paper investigates the accuracy of predictions
givendifferent techniques forparameter optimization anddecisions throughout
the modeling process. The research also explores how noise affects the
estimations ofCOVID-19 cases, deaths, andhospitalizations through simulation.
Visualizations are used to compare the differential equation solutions with
actual data, as well as plot the parameter values over time. The research finds
that predictions are most accurate when the time interval of the predicted
data is close to the data with which the parameters were fit, likely due to the
variability of the COVID-19 data causing parameter values to change over
time. However, while larger trends affect the predictions, random noise in
the data does not appear to have a large effect on the model predictions.
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Chapter 1

Building the model: the
mathematics

1.1 Background on COVID-19

The novel coronavirus, now known as COVID-19, was first discovered in
the city of Wuhan, Hubei Province, China in December 2019. By January 20,
2020, the United States identified its first COVID-19 case in Washington State
(Stone, 2021). Six days later, on January 26, Los Angeles County saw their
first case, from a traveller coming fromWuhan (Staff, 2020). OnMarch 11, the
World Health Organization (WHO) declared COVID-19 a pandemic, citing
their concern with the rate of transmission, severity of symptoms, and the
lack of public response (WHO, 2020). Due to the novelty of COVID-19, the
trajectory and effects of the diseasewere and continue to be difficult to predict
with limited data. For this reason, a susceptible-infected-removed (SIR)
model of differential equations, which relies on a theoretical understanding
of the disease and minimal data, can allow us to make predictions and
understand the nature of COVID-19 in order to prevent further spread.

1.2 Systems of differential equations

Systems of differential equations are sets of equations that describe the
rates of change for different processes. They are often used in physics
and engineering to describe the relationships between objects, chemistry
to understand mixing properties, and within biological fields to model
population growth or decay, species interactions, disease spread, and many
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other biological relationships. Regardless of the application, there are three
main components of a differential equation model, which are laid out by
Blanchard et al. (2006). The first component is the independent variable,
which often (and in the case of our model) is time (C). The second component
is the set of dependent variables, which are a function of the independent
variable, in our case C. The final component is the set of parameters, which
are fixed values that do not change with respect to the independent variable
(Blanchard et al., 2006). Depending on the application, the solutions to
differential equations take on different meaning. Let’s look at an example to
understand how to interpret a differential equation and solution:

Blanchard et al. (2006) provide an example of a simple differential
equation that models population growth. The rate of increase, in people
per day, is defined by the following equation: 3%

3C = :%, where : is a
proportionality constant and C is days. We can solve for this equation with
the separation of variables such that 3%% = :3C, which we can solve for % to
get %(C) = 4 :C . This solution gives us the population value as a function of
C. Using the value given by any particular solution, such as information
about the population at C = 0 or %(0), we can solve for :. The population
example only uses one equation to predict population growth. However,
more complicated systems incorporate multiple equations to model related
dependent variables. Systems of equations can be more difficult to find
closed form solutions for andmay require numerical solutions. The systemof
differential equations modeling COVID-19 that is described in this paper has
6 equations (see Equation 1.3) and is solved using computational methods
in both R and MATLAB programming languages.

1.3 SIR models

The SIRmodel is a three compartment model that describes the spread of
disease by rates of transition between different variables. In the most simple
version of the model, the variables are susceptible people (S), infected people
(I), and removed or recovered people (R). At all times, (+ �+' = population.

Kermack and McKendrick (1927) first describe this model in 1927 in A
Contribution to the Mathematical Theory of Epidemics as a version of a more
complicatedmodel, where the parameters are constant rates. The biochemist
and physician describe the rates as:
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3G
3C = −�GH
3H

3C = �GH − ℓ H
3I
3C = ℓ H

(1.1)

where G, H, I are dependent variables, C is the independent variable, and �
and ℓ are constant parameters that correspond to rates. Specifically, the first
equation describes the rate of change of G, which decreases by a constant rate
�multiplied by the interaction of G and H. The second equation describes the
rate of change of H, where it increases by �GH and decreases by the constant
rate ℓ times H.

Kernack andMcKendrick’s framework has been used in manymodels for
infectious diseases since 1927, such as Cholera, SARS, Ebola, Plague, MERS,
Influenza, and now COVID-19 (Yadav, 2020). In a simple example of the
model, the COVID-19 model in Cooper et al. (2020) uses different notation,
but essentially the same equations as in Kermack and McKendrick (1927).

Amore complicated example of an SIRmodel is a SEIRSmodel described
in Oluyori and Adebayo (2020), where variables included in the model are
susceptible (S), exposed (E), infected (I), and recovered or removed (R). This
model accounts for reinfection by reintroducing recovered and previously
quarantined individuals back into the susceptible group, by adding a term
to the differential equation corresponding to 3(

3C , the rate of change in the
susceptible variable. The equations in Oluyori and Adebayo (2020) are as
follows: 

3(
3C = � − �( − �(�

1+� + (� + &)
3�
3C =

�(�
1+� − (� + �)�

3�
3C = �� − (� + � + ))� − )(�)
3'
3C = −(� + & + � + $)' + )(�)

(1.2)

where � corresponds to the population growth rate, � is the natural death
rate, �(�

1+� is the rate at which people become exposed from the population
of susceptible individuals, � is the recovery rate, & is the rate of release from
quarantine for the removed population, � is the rate of infection, ) is the
disease death rate, $ is the rate of the removed population, and )(�) is a
piece-wise function that determines the rate of medical treatment response.

This SEIRS model builds upon the simple SIR model by taking into
account aspects such as exposure rate, treatment response rate, and the
possibility of reinfection. In particular, the exposure rate �(�

1+� is based on a
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model of saturation incidence developed by Esteva and Matias (2001) where
the exposure rate accounts for behavioral changes based on the number
of infected people and the saturation parameter corresponding to the rate
at which people adhere to prevention tactics. Furthermore, Oluyori and
Adebayo (2020) include the rate of treatment response, which is dependent
on the number of infected individuals and thereforemedical center capacities.
These additions to their model allow for increased accuracy and attention
to nuances within the model. While the SEIRMD model explored in this
paper assumes a closed population (no new births or natural deaths), does
not incorporate the saturation incidence described above, nor acknowledge
cases of reinfection, it does account for medical capacities. Furthermore,
the added variables – hospitalizations (M) and deaths (D) – allow for the
inclusion of different death and recovery rates for those within hospitals
versus the rest of the infected population in the model.

1.4 Our model

The model was created by Professors Christina Edholm, Maryann Hohn,
andAmi Radunskaya in order to understand how the five Claremont colleges
would be affected by reopening the school in the Fall of 2020 during the
global COVID-19 pandemic. I will explore a version of this model that does
not take into account the 5Cs specifically, but instead models the general
trajectory of COVID-19 fit with LA County data. (Edholm et al., 2021)



Our model

1.4.1 Flow equations

S IE R
𝜸𝑰𝑬 𝜹𝑰𝑰

𝜷𝑺 𝒈 + 𝑰 + 𝜶𝑬

MD

𝜹𝑴𝑴
𝝁𝑰𝑰

𝝁𝑴𝑴

𝝎𝑰𝑰

𝜸𝑹𝑬

Figure 1.1 Flow diagram between variables in SEIRMD model.

Variable Description
( Number of Susceptible individuals
� Number of Exposed individuals
� Number of Infected individuals
' Number of Recovered individuals
" Number of quarantined including Medical center individuals
� Number of Deceased individuals

Table 1.1 Description of the dependent variables from Figure 1.1.

The diagram in Figure 1.1 describes the rates of flow between each
variable. The six variables, described in Table 1.1 are Susceptible ((),
Exposed (�), Infected (�), Recovered ('), Medical center individuals ("),
and Dead bodies (�). The parameters next to the arrows describe the rates
of people moving from one variable to the next.
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Parameter Initial value Description
 6.7817 × 10−4 fraction reduction in transmission during the

asymptomatic period
� 5.2257 × 10−10 transmission rate
�� 0.08196 days recovery rate for Infected individuals
�" 0.0129 days recovery rate for Medical center individuals
6 1 greater community interaction probability.
�� 0.01332 days transfer rate of Exposed to Infected individuals
�' 0.03964 days transfer rate of Exposed to Recovered individuals
"<0G 1967 parameter representing the capacity of the hospital

(approximately 2/3 of actual capacity)
�� 6.3811 × 10−6 death rate of Infected Individuals
�" 0.01964 days death rate of Medical center Individuals
$� 0.03413 transfer rate of Infected individuals toMedical center

Table 1.2 Initial parameter values fit to LA County Data by Edholm et al., April
20-May 16, 2020.

The parameters in Table 1.2 have been approximated and fit to data from
April 20 to May 16, 2020 by Edholm et al. (2021). These values are used as
starting points to determine the optimal parameters to fit more recent data.
I delve further into this process in Chapter 2.

The following bullet points will detail the parameters featured in the flow
diagram (Figure 1.1) and the relationships between each of the variables:

• The transition rate between Susceptible (S) and Exposed (E) is �((6 +
� + �) people per day. This equation is the sum of the greater
community interaction probability (6), the number of infected people
(�), and the number of exposed people (�) scaled by their reduced
transmission rate from the asymptomatic period (), all multiplied by
the number of susceptible individuals (() and the general transmission
rate (�).

• For Exposed (E) to Infected (I), the rate is ��� people per day, which
is the product of the number of exposed people (�) and the transfer
rate from exposed to infected (��).

• Similarly, the rate for Exposed (E) to Recovered (R) is �'� per day,
which is the product of the number of exposed people (�) and the
transfer rate of exposed to recovered individuals (�').
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• Between Infected (I) and Recovered (R) individuals, the transition
rate is �� � people per day, which is the product of the number of
infected people (�) and the recovery rate for infected individuals (��).

• The transition rate between Infected (I) and Medical center (M)
individuals is $� � people per day, which is the product of the number
of people infected (�) and the transfer rate of infected individuals to
medical centers ($�).

• The mortality rate, or transition rate between Infected (I) and Dead
bodies (D) is �� � people per day, which is the product of the number
of infected people (�) and the death rate of infected individuals (��).

• The rate from Medical center (M) to Recovered (R) individuals is
�"" people per day, the product of the number of people in medical
centers (") and the recovery rate for individuals in medical centers
(�").

• Finally, the death rate in medical centers, or the rate of transition from
Medical centers (M) to Deceased (D) individuals per day, is �"".
This rate is the product of the number of people in medical facilities
and the death rate of individuals in those medical centers (�").

1.4.2 Differential equations

The relationships defined in Figure 1.1 lead to the construction of a
series of equations describing the rates of change within each state. The
conservation principle defines the rate of change 3.

3C for a state . as the
increase in . (.+) subtracted by the decrease in Y (.−). With this principle,
we can create a system of differential equations describing the rates of change
within each state.

3(
3C = −�((6 + � + �)
3�
3C = �((6 + � + �) − (�� + �')�
3�
3C = ��� − (�� + ��)� − $� 4−("/"<0G)2 �
3'
3C = �� � + �"" + �'�
3"
3C = $� 4−("/"<0G)2 � − (�" + �")"
3�
3C = �� � + �""

(1.3)

The following bullet points explain the equations that describe the change
in dependent variables over time in Equation 1.3:
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• The change in number of susceptible people ( 3(3C ) over time is equal to
the negative of the number of new people becoming exposed over time
(�((6 + � + �)). This is a variation of the exposure rate in Equation
1.2, which was �(�

1+� .

• The change in number of exposed people ( 3�3C ) is equal to the number
of new people becoming exposed (�((6 + � + �)) subtracted by the
summation of the number of people becoming infected from exposure
and the number of exposed people who recover over time (�(�� + �')).
Building off of Equation 1.2, the only differences in Equation 1.3 for 3�

3C

are that we do not include the decrease due to natural deaths, but we
do account for those who recover directly after exposure, instead of
becoming infected (�'�).

• The change in number of infected people ( 3�3C ) is equal to the number of
exposed people becoming infected (���) subtracted by the summation
of recovered and dead people who were previously infected and
infected people who are moved to medical facilities over time (�(�� +
��+$� 4−("/"<0G)2)). Aside from theomissionof natural deaths, the only
difference between Equation 1.3 and 1.2 is the term that describes the
medical facility capabilities. In Equation 1.3, the term is $� 4("/"<0G)2 �
while for Equation 1.2, the term is a piece-wise function.

• The change in number of recovered individuals is equal to the sum of
the recovery rate from infected, exposed and those in medical facilities,
which is a term that differs from Equation 1.2, as they use T(I) again,
but we use �"".

• The change in number of people in medical centers ( 3"3C ) is equal to
the number of new medical center patients over time ($� 4−("/"<0G)2 �)
subtracted by the summation of the number of dead (�") and recovered
(�") hospital patients over time. Both M and D are not included in
the Oluyori and Adebayo (2020) model, but they are helpful because
we have Los Angeles county data for these variables.

• Finally, the change in number of deceased people ( 3�3C ) is equal to the
summation of people who were infected who died (�� �) and dead
people who were in medical facilities over time (�"").

These equations can be solved using computational methods, such as
deSolve in R, to find counts of people in each state after a specified amount
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of time.

1.5 Paper outline

In Chapter 1, I laid out the basic structure of the (Edholm et al., 2021)
model. The following chapters will explore the SERIMD model in further
detail. In Chapter 2, I will describe the process of the running the model,
from the data selection and assumptions made about the initial values, to
the parameter optimization and the ODE solver ‘lsode‘. In Chapter 3, I will
describe the analyses that I conducted, including the creation of a Shiny
app, exploration of changing parameter and data variability over time, and
comparisons of accuracy with Marin county. Finally, Chapter 4 concludes
the paper with a review of the main takeaways from my research into the
Edholm et al. (2021) SEIRMD model and future directions.





Chapter 2

Running the model

2.1 The data

The majority of data used to fit and assess the Edholm et al. (2021)
model comes from the Los Angeles Times Data and Graphics Department’s
GitHub repository, which provides daily-updated COVID-19 data (Los
Angeles Times Staff, 2021). The GitHub repository contains state-wide data
from the California Department of Public Health, as well as data compiled
by the Times from all 58 counties’ public health agencies and other local
organizations. This data primarily counts California residents, excluding
visitors and non-residents who test positive in California, beginning with the
earliest case data reported in January 2020 and hospitalization data starting
in March 2020.

2.1.1 Cases and deaths

The latimes-county-totals.csv file contains columns specifying
the date, county, fips (a unique code for each county), number of confirmed
cases, number of deaths, number of new confirmed cases since the previous
day, and number of new deaths since the previous day (Los Angeles Times
Staff, 2021). Each row is a vector of data corresponding to a unique date and
county. The data begins on January 26, 2020 and is updated daily, with one
row for each of the 58 counties in California. Counties where cases are not
reported until March or April show NA values until the first cases appear.
The Edholm et al. COVID-19 model was intended to be used for predicting
Los Angeles county cases and other outcomes, so I filtered the data to only
contain rows with Los Angeles county COVID-19 data. For example, Table
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2.1 is a snapshot of seven rows of data for Los Angeles county between
March 29 and April 4, 2020.

Date County FIPS Confirmed
cases Deaths

New
confirmed
cases

New
deaths

2020-03-29 Los
Angeles 37 2147 37 329 5

2020-03-30 Los
Angeles 37 2505 44 358 7

2020-03-31 Los
Angeles 37 3037 54 532 10

2020-04-01 Los
Angeles 37 3528 66 491 12

2020-04-02 Los
Angeles 37 4071 80 543 14

2020-04-03 Los
Angeles 37 4605 93 534 13

2020-04-04 Los
Angeles 37 5325 119 720 26

Table2.1 Los Angeles Times case and death data between March 29 and April
4, 2020 in Los Angeles county.

2.1.2 Hospitalizations

Thecdph-hospital-patient-county-totals.csvfile is provided
by the California Department of Public Health and contains county-wide
data about hospitalized patients (Los Angeles Times Staff, 2021). The
columns specify the date, county, Federal Information Processing Standards
(FIPS), number of positive patients (including in ICUs), number of suspected
patients (including in ICUs), number of positive patients specifically in the
ICU, and the number of available beds specifically in the ICU. Similar to the
case data in Section 2.1.1, each row contains data corresponding to a day and
one of the 58 counties. Thus, there are 58 rows of data per day, beginning
March 29, 2020 and continually updating as the pandemic continues to
fill hospitals with COVID-19 patients. As seen in the previous section, I
filtered the data to only include Los Angeles county data. I also created a
new column called Hpatient that adds the number of positive patients
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and the number of suspected patients to give the total number of COVID-19
hospitalized patients (including those in ICUs) in Los Angeles county per
day. Table 2.2 captures the first seven rows of Los Angeles county hospital
data, from March 29 to April 4, 2020.

Date County FIPS Positive
patients

Suspected
patients

ICU
positive
patients

ICU
suspected
patients

ICU
available
beds

Hpatient

2020-03-29 Los Angeles 37 489 1132 191 182 345 1621
2020-03-30 Los Angeles 37 601 1277 245 244 456 1878
2020-03-31 Los Angeles 37 713 1239 315 239 445 1952
2020-04-01 Los Angeles 37 739 1332 335 220 492 2071
2020-04-02 Los Angeles 37 818 1270 346 193 488 2088
2020-04-03 Los Angeles 37 962 1239 422 209 473 2201
2020-04-04 Los Angeles 37 1007 1190 449 181 537 2197

Table 2.2 California Department of Public Health hospitalization data
between March 29 and April 4, 2020 in Los Angeles county. Note that the final
column Hpatient is created by adding the positive and suspected patients.

2.1.3 Initial values

In order to find values for the dependent variables ((, �, � , ', ", and �)
in the Edholm et al. (2021) model at different times C, we must begin with
initial values for these six variables. While these values rely on data, they
are also based on assumptions and decisions made by Edholm et al. (2021).
The following bullet points explain how the initial values of the dependent
variables listed above are calculated and the assumptions on which they
rely:

• For the susceptible state, the initial value (0 is the total population in
Los Angeles county (9, 651, 332) subtracted by the summation of the
initial values for all five other states:

(0 = 9651332 − (�0 + �0 + '0 +"0 + �0)

The population data is given by the Los Angeles County Department
of Public Health’s 2018 census data (Department, 2021). The rest
of the data—COVID-19 cases, hospitalizations, and death data used
for remaining states—comes from the Los Angeles Times GitHub
coronavirus repository (Los Angeles Times Staff, 2021).
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• The initial value �0 for the exposed state is equal to the summation
of new cases in the ten days including and leading up to the model’s
start date multiplied by twenty:

�0 = 20 ×
0∑

C=−9
�C

where C = 0 is the first day of data with which the model is fit and �8
is the number of new cases on the 8Cℎ day. For example, �−1 would
be one day before the model start date. This calculation assumes that
there are twenty times more people exposed than there are confirmed
cases, implying that each person infects an average of 20 others.

• Thus it follows that the initial value of infected individuals �0 is equal
to the summation of new cases in the ten days including and leading
up to the start date of the model:

�0 =

0∑
C=−9

�C

where �C follows the same notation as the previous bullet point. Using
this calculation as the initial value assumes that no cases prior to ten
days before C = 0 would still be within the infected group. In other
words, the average duration of infection is ten days; nine days after
testing positive, an individual is still infected, but ten days after a
positive test they are either recovered, in a medical facility, or deceased.

• The initial value of recovered individuals '0 is equal to the cumulative
case count before the ten days prior to themodel’s start date, multiplied
by twenty and 0.95:

'0 = .95 × 20 × )−10

where )−10 corresponds to the cumulative number of cases 10 days
prior to the model start at C = 0. This assumes that 95 percent of those
who were exposed, from the beginning of the pandemic up until ten
days before the model’s start, have recovered.

• For the individuals in medical centers, the initial value is equal to the
number of people in hospitals for suspected and confirmed COVID-19
cases on the model’s start date:

"0 = Hpatient0
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This assumes that all suspected COVID-19 cases in the hospital, where
patients present symptoms and are waiting on COVID-19 tests, will
have positive results.

• Similarly, the initial value for the deceased state is equal to the total
number of people who have died from COVID-19 by the model’s start
date.

�0 = Total deaths0

2.1.4 Parameter Optimization

The parameters described in Table 1.2 were fit by Edholm at al. based
on calculations and assumptions. Using these values as a baseline, I
implemented my own optimization method with the help of the optim
function from the R stats package. The optim function is a generic
optimization function that, by default, attempts to minimize a value output
by a function of the user’s choice. The optimization process loops through the
differential equation which produces a value for the specified optimization
functionwith different parameter values until the optimization criterion does
not decrease by a certain tolerance level, which by default is 1.490116e-08,
based on the square-root of the smallest number that my computer identifies
for 1+x ≠ 1.

The original optimization criterion was the summation of: the sum of
squares error (SSE) between the predicted and actual case numbers, the SSE
of the predicted and actual death numbers, and the SSE of the predicted and
actual hospitalizations. The statistic can be written as:

�1 =

=∑
C=1
((�̂C − �C)2 + (�̂C − �C)2 + (�̂C − �C)2) (2.1)

where the ˆℎ0C marks the predicted values, � denotes cases, � is deaths, and
� represents hospitalizations.

This function was input into the optim function, with the original
parameters and the data and initial states, as described in the previous
sections. The functionoptim loops through themodel a number of times that
is specified by maxit, running the optimization function and determining
the combination of parameters that outputs the smallest sum of SSE values.

However, Equation 2.1 does not take into account the differences in
magnitude between the numbers of cases, deaths, and hospitalizations.
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Most days, the number of total cases is over 40 times the number of total
deaths and over 100 times the number of hospitalized individuals. Naturally,
this means that the sum of squared errors for the total predicted versus
actual cases will be larger than that of the death or hospital data, simply
because of the difference in magnitude between the data. Thus, because the
optimization process minimizes the raw sum of SSE values, the optimization
will have the largest effect on the cumulative case predictions, providing the
best predictions for the parameters associated with rates of infection and
potentially neglecting the parameters for death and hospitalization rates.
In Figure 2.1, I fit the parameters for each month separately, modeled the
data for the respective month, and then concatenated the estimated data
to get the full time series. This figure depicts the differential performance
of the optimization criterion when the results are split up into modeled
and actual values for each of the three data sets – cumulative cases, total
deaths, and number hospitalized. The (Edholm et al., 2021) model with the
�1 optimization criterion described by 2.1 predicts cumulative cases much
better than hospitalizations and deaths.

Figure2.1 Predicted (blue) and actual (red) COVID-19 cases, hospitalizations,
and deaths using Equation 2.1 to optimize parameters.

After discovering this issue, I decided to change the optimization criterion.
Adjusting onto Equation 2.1, I scaled each of the three summations by the
mean of their actual values to get an error value that is not skewed by a
difference in magnitude.

�2 =

=∑
C=1

(�̂C − �C)2
<40=(�C)

+ (�̂C − �C)2
<40=(�C)

+ (�̂C − �C)2
<40=(�C)

(2.2)
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Figure2.2 Predicted (blue) and actual (red) COVID-19 cases, hospitalizations,
and deaths using Equation 2.2 to optimize parameters.

Figure 2.2 shows that the new optimization statistic provides more
equally accurate predictions across the three variables, while not substantially
compromising the accuracy of the cumulative case predictions. Equation 2.2
seems to improve the model predictions for all three of the data sets (cases,
deaths, and hospitalizations), thus it will be used for all further analyses.

Regardless of the criteria, the parameter optimization relies on COVID-19
case, death, and hospital data, which is ever-changing over time. Therefore,
the optimal parameter values change depending on the time-frame used to
optimize the model and there does not exist a single best value for each of
the parameters. In Chapter 3, I will discuss the importance of this variability
and what it says about the model’s stability.

2.2 Solving the equations with lsode in R

The final step of running the model is solving it. To do so, I use a function
in R called ode, which is a wrapper for different ODE solvers, meaning it
calls other functions to solve the specified system of differential equations.
After some exploration, I chose the lsode solver for its processing speed.
This ODE solver which was originally developed in Fortran by Alan C.
Hindmarsh and adapted to R. The function solves both stiff and non-stiff
systems of differential equations (Hindmarsh). The default is to compute the
ODE as a stiff system, meaning the solution is unstable unless the step size
is very small (Xu). lsode solves stiff systems of equations using a Jacobian
matrix. In Radhakrishnan and Hindmarsh (1993), the authors describe how
the function solves the ODEs using the initial values. The solver finds the
solution for each time point by determining an initial estimate and then
improving on it until it no longer changes (Radhakrishnan and Hindmarsh,
1993). The output (shown below in Table 2.3) of the lsode function, and
therefore, the wrapper ode, is a matrix with columns as the dependent
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variables or states, rows as each time point C (days, in our case), and cells as
predicted values for each variable at each time point C.

time S E I R M D T
1 9572401 62340.00 3117.000 7809.00 2071.000 66.0000 3528.000
2 9568638 63422.94 3261.243 10311.20 2075.331 95.4040 4037.325
3 9564804 64529.59 3398.648 12863.48 2082.994 124.8953 4555.517
4 9560900 65659.69 3530.368 15466.20 2093.441 154.5172 5082.769
5 9556923 66813.10 3657.409 18119.79 2106.193 184.3057 5619.269
6 9552874 67989.71 3780.661 20824.75 2120.831 214.2906 6165.205
7 9548750 69189.49 3900.886 23581.64 2137.000 244.4958 6720.766

Table 2.3 First 7 rows of predictions for April 2020 where parameters are fit
with April 2020 data



Chapter 3

Assessing the model

3.1 Parameter change over time

Theoretically, most of the parameters listed in Table 1.2 should be
constant values. However, as mentioned in Chapter 2, because parameter
optimization minimizes the error between predictions and real COVID-19
data, and COVID-19 data has been highly variable over the past year, the
parameter values also vary. The plot in Figure 3.1 below depicts these
changes. For each month from April to December 2020, I optimized the
parameters using that month’s data. Then I plotted the anomalies of the
parameters, calculated by subtracting the mean of the values from each
actual value to get a standardized version of the value that highlights any
differences in the parameter values relative to the average value for that
parameter. A value above zero indicates a higher value than the average
parameter value while a value below zero indicates a lower value.
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Figure 3.1 Anomaly change in optimal parameters for each month’s data

These plots allow us to see that there is variability in all of the parameters
over time and there is not one single time interval that appears to cause the
changes. There are a few patterns to notice:

• Parameters �� , the transfer rate of exposed to infected individuals,
�, the transmission rate, and �', the transfer rate from exposed to
recovered, all have significant increase in May. These parameters are
all associated with the first few dependent variables and the transitions
from Susceptible to Infected or Recovered. In the context of Los
Angeles county, the Department of Health created a five-stage plan
and transitioned from Stage 1 (stay-at-home orders) to Stage 2 (limited
reopening) at the beginning of May (Department of Public Health).
The parameter change could suggest that this transition caused an
uptick in transmission and exposure to COVID-19.

• Parameters �� , recover rate for infected individuals, and "<0G , the
capacity of hospitals, have a similar increase, plateau, and thendecrease
from August through October. In fact, most of the parameters show
plateaus during this time interval. This implies that the data (and
therefore, model) was relatively constant for a few months in fall 2020.
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• Parameters , the fraction reduction in transmission during the
asymptomatic period, �� , the death rate of infected individuals, and
$� , the transfer rate of infected individuals to medical centers all have
relatively extreme changes in their values in December. In December
2020, COVID-19 cases, deaths, and hospitalizations skyrocketed, which
likely explains the sharp changes in parameter value. In fact, I am
surprised that more parameters did not drastically change for these
later months.

3.2 Visualizing model accuracy

3.2.1 Shiny

Because the parameters vary depending on the data provided for
parameter optimization, I wanted to try as many different analyses and
visualizations as possible. Thus, I decided to create an interactive Shiny
app that allows the user to determine the months used in the parameter
estimation and plot the predictions from this model applied to the following
month. For example, if I selected 7 (July) on the slider, the app would
optimize the parameters to fit the COVID-19 data from April through July,
predicting and plotting the values for August. The Shiny app is a helpful
exploratory tool because it allows for repeated runs of the same analysis
with certain tweaks in the parameter estimation code such as the months to
fit and selection of variables to plot.
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Figure 3.2 Exploratory Shiny app for visualizing model-building and
parameter optimization with di�erent combinations of months. Please email
me if you would like access to the app at anniecohen041@gmail.com.

Through the Shiny app, I discovered that optimizing parameters based
on longer time frames (from April through November and predicting for
December, for example) does not make for more accurate predictions. This
may seem counter-intuitive, but the COVID-19 pandemic in Los Angeles
county has experienced multiple surges of the virus and endured many
phases of stay-at-home restrictions and re-opening policies. These changes
and decisions may cause variation in the data and make predictions less
accurate.

3.2.2 Predicting months out

Based on my conclusions from the Shiny app, I decided to use only one
month at a time to optimize the parameters and build the model. First,
I used the optim function (as described in Chapter 2) to estimate these
parameters based on each month’s data separately. I ended up with 8 vectors
of parameters, one for each month April through November. Next, I used
each month’s parameters to run the model and predict outcomes for the
same month, the following month, and the month after. I combined the
predictions for each of these together with the other months of the same



Visualizing model accuracy

prediction type (same month, month after, 2 months after) to visualize the
prediction accuracy over the whole time series.

Figure 3.3 Actual and predicted cumulative cases, deaths, and
hospitalizations for the same month that model is fit, one month out,
and two months out

Figure 3.3 displays plots of predictions, with the x-axes displaying the
month predicted. The first row of plots are the number of cumulative cases,
the second are deaths, and the third are hospitalizations. The first column
depicts the predictions for the month with which the parameters are fit, the
second are predictions for the month after, and the third are two months
after.

In Figure 3.3, the prediction accuracy clearly getsworse the further out the
predictions are. However, predictions for cumulative cases and deaths are
muchmore accurate than that of hospitalizations. All of the predictedmonth
segments begin on the observed line because their initial value matches
that of the data, but as the month goes on, especially for the hospitalization
predictions one and two months out, the predictions stray from the actual
data. Both deaths and cases are monotonic functions because they are
cumulative, while hospitalizations are individual daily measurements. This
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allows for more variability in the number of hospitalized individuals at a
given time than the number of cumulative cases at a given time, therefore it
makes sense that the estimated numbers of hospitalizations are less accurate
when predicting for further out months.

3.3 Measuring model accuracy

In order to quantify the accuracy of the predictions, I calculated the root
mean squared error (RMSE) of the predictions for the same month as the
model fitting, one month out, and two months out. Figure 3.4 displays the
RMSE values, with the x-axis as the month for which the data was predicted,
the y-axis as the RMSE value with a log scale, and each line as a different
number of months prior that the parameters were fit: 0, 1, or 2. For example,
this means that the point on each of the red, green, and blue lines where
G = Jul correspond to July predictions from parameters fit using July, June,
and May data, respectively.

Figure 3.4 Monthly fit model prediction accuracy (measured by RMSE) for
same month, one month out, and two months out
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For the most part, the plots in 3.4 demonstrate what we saw in the last
section: farther out predictions tend to be less accurate. If we weigh cases,
deaths, and hospitalization RMSEs equally, we run into a similar problem as
in the Chapter 2 parameter optimization challenge, where the difference in
magnitude between numbers of cases, deaths, and hospitalizations impacts
our conclusions. The RMSE values for deaths are much lower than that
of cases or hospitalizations. Also interestingly, we see death predictions
that are one or two months out do not appear to be much worse than
the estimations from the parameter-fitted month. Another pattern we can
see is that after beginning in October, most of the RMSE values increase,
inflating the difference between results from data for different numbers of
months out. We can interpret this to mean that sharp changes (specifically,
increases) in cases, deaths, and hospitalizations magnify the inaccuracies in
the predictions.

3.3.1 Marin county accuracy

To understand the effect of the parameter values on the predictions
and model accuracy, I ran the model with Los Angeles county parameters
to predict Marin county cases, deaths, and hospitalizations. The only
information that I changed was the initial values to reflect the current
population and previous case, death, and hospitalization counts in Marin
county.
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Figure 3.5 Marin county data modeled with Los Angeles county parameters

Figure 3.5 displays the predictions for Marin county in May, based on
the parameters fit for Los Angeles county in May, as well as the initial values
calculated from Marin county’s April data. It is important to note that the
first "predicted" value for each month is the exact same as the data because
it is the input initial value for the modeling process. This is especially clear
in the middle plot of the logarithm of the number of deceased individuals,
where the first value appears on the line with the actual values and then the
predictions jump up at least 3 (back-transformed, this becomes 43 = 20.1)
and plateau until the next month. For the logarithm of the total cases and the
number of hospitalized, the plateaus in September andOctober are predicted
very accurately with the Los Angeles county parameters, suggesting the
potential trend that both Los Angeles andMarin county had similar plateaus
during the fall. Furthermore, we can see in all three of the plots that around
November and December, the predicted cases, deaths, and hospitalizations
increase sharply. This suggests that Los Angeles county had a much greater
surge in these winter holiday months than Marin county.



Data inaccuracies

3.4 Data inaccuracies

3.4.1 Exploration and intuition

Throughout my analysis, one of my main goals was to try to understand
the variability in the data in order tomake better predictions. COVID-19 data
collection does not provide completely accurate daily statistics on COVID-19
cases because the majority of testing facilities are closed on Sundays, which
means there appears to be less cases on Sundays. Furthermore, around
holidays there can be spikes due to community and family contact and also
drops on the day of the holiday due to less testing.

Figure 3.6 New cases in Los Angeles county over time, with Sundays and
Mondays in blue and Thanksgiving and Christmas in red

In Figure 3.6, the blue lines highlight Sundays and Mondays, which in
most weeks happen to overlap with the dips in the data. Potentially, the
systems are testing the data from Saturday and the past week and continue to
catch up on testing on Monday, leading to fewer cases recorded both Sunday
andMonday. During the holidays, there is a clear drop on Christmas day and
a spike right after. For Thanksgiving, there is a small spike before the holiday,
potentially people getting tested before visiting family. Thanksgiving also
marks the beginning of the huge wave from the beginning of December
through January in Los Angeles county.
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3.4.2 Simulating noise

In order tounderstandhowpotential noise affects theparameter optimization
and model prediction accuracy, I simulated new values for cases, deaths,
and hospitalizations, taking 100 different samples from a multinomial
distribution where the set proportions were the proportions of cases, deaths,
and hospitalizations, independently, on each day. After this step, I had three
31x100 matrices (one for each data set: cases, deaths, and hospitalizations)
simulating 100 values for each day of the month of May. I fed these
matrices into the optim function to optimize the parameter with respect
to this simulated data and obtained an 11x100 matrix, where each row is a
different estimated parameter (, �, �� , �" , �� , �' , "<0G , �� , �" , $� , 6) and
the columns are the different simulated samples. With these values, I created
the boxplots in Figure 3.7 to examine the distribution of each parameter.

Figure 3.7 Parameter values fit from bootstrapped May Los Angeles county
data infused with random noise

With the exception of a few outliers, most notably in the distributions of
�� , 6, and $� , the majority of the parameters do not appear to vary much
with the infusion of random noise.

I used the 11x100 matrix of parameter values fit with bootstrapped data
infusedwith randomnoise to estimateMaycases, deaths, andhospitalizations



Data inaccuracies

and plotted the results in 3.8, where the observed data line is in dark blue
and the simulations are in orange.

Figure 3.8 Estimates of numbers of cases, deaths, and hospitalizations
modeled with parameters fit using bootstrapped May Los Angeles county data
infused with random noise

Similar to the results from Figure 3.7, most of the simulated predictions
are accurate estimates of the observed data. There are a few outliers,
especially for the hospitalization data. Overall, this analysis suggests that
our model is not overly sensitive to noise.





Chapter 4

Conclusions and Future Work

4.1 Conclusion

Many of the aspects of the Edholm et al. COVID-19 model that I addressed
in my research have to do with variability: variability of the data and
parameters, and how to make the best decisions to optimize the prediction
accuracy. The following categories lay out my conclusions.

4.1.1 COVID-19 data variability

Owing to many external variables including state-level restrictions on
mask-wearing and school and business re-openings, COVID-19 data has
surged, dipped, plateaued, and surged again over the past year. It is further
varied by data collection practices such as closed testing facilities and labs on
Sundays and events such as holidays that introduce more social interaction
and potential for infection.

Throughbootstrap simulations that added randomnoise into theCOVID-19
case, death, and hospitalization data, I determined that noise does not appear
to have a large effect on parameter optimization and model estimates.

4.1.2 Parameter variability

Due in part to the waves of COVID-19 cases throughout the pandemic,
the optimal parameters change depending on the time interval of the data
used to fit the values. By identifying the parameters that are variable at
specific time intervals, it could be possible to implement changes to the
model to decrease the parameter variation and therefore prediction accuracy.
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Furthermore, when applying parameters fit from Los Angeles county
data tomodelMarin countyCOVID-19 outcomes, the estimations overpredict
the number of deaths and certain months of hospitalization and case data.
Therefore, parameter estimation with this system of differential equations
should be done independently for different locations and time frames.

4.1.3 Optimization and prediction options

There are many options for ways to optimize the parameters and
predict the data. By developing a Shiny app and using other visualization
and statistical tools, I was able to explore many of these combinations,
determining that shorter intervals for model building proved to be more
effective in capturing trends that would continue into the following month
(or two).

4.1.4 Assessment of predictions

The inconstant parameter values across time also made it difficult to
predict accurately for months farther out than one or two. Especially when
comparing actual and predicted hospitalization data, the predictions become
much worse the farther from the month with which the parameters were fit.

4.2 Future Work

Because this model was created early on during the pandemic, many
of the initial values and assumptions could be updated based on more
recent knowledge of the virus. There is far more data to accurately estimate
parameters such as transmission and recovery rates than there were in
June, when the model was developed. Furthermore, relationships that were
defined based on assumptions, for example, the ratio of exposed individuals
to infected individuals, have likely been studied since the creation of the
model and could be updated. Specifically for the Exposed variable, Professor
Edholm and I discussed the possibility of optimizing the initial Exposed
value in order to move away from the simple assumption that 20 times
more individuals are exposed than infected. Additionally, I would be
interested in including a saturation incidence term into the rate between
Susceptible and Exposed as developed by Esteva and Matias (2001) and seen
in the Oluyori and Adebayo (2020) SEIRS model, as well as accounting for
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waning immunity with the inclusion of recovered individuals back into the
Susceptible population.
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