A function to compute the biweight mean vector and covariance matrix
Source:R/biwt.est.R
biwt.est.Rd
Compute a multivariate location and scale estimate based on Tukey's biweight weight function.
Usage
biwt.est(x, r = 0.2, med.init = robustbase::covMcd(x))
Arguments
- x
a
2 x n
matrix or data frame (n
is the number of measurements)- r
breakdown (
k/n
wherek
is the largest number of measurements that can be replaced with arbitrarily large values while keeping the estimates bounded). Default isr = 0.2
.- med.init
a (robust) initial estimate of the center and shape of the data. The format is a list with components center and cov (as in the output of
covMcd()
from the rrcov package). Default is the minimum covariance determinant (MCD) on the data.
Value
A list with components
- biwt.mu
the final estimate of center
- biwt.sig
the final estimate of shape
References
Hardin, J., Mitani, A., Hicks, L., VanKoten, B.; A Robust Measure of Correlation Between Two Genes on a Microarray, BMC Bioinformatics, 8:220; 2007.
Examples
# note that biwt.est() takes data that is 2xn where the
# goal is to find the correlation between the 2 items
samp.data <- t(MASS::mvrnorm(30,mu=c(0,0),
Sigma=matrix(c(1,.75,.75,1),ncol=2)))
samp.bw <- biwt.est(samp.data)
samp.bw
#> $biwt.mu
#> [1] 0.2923344 0.2346656
#>
#> $biwt.sig
#> [,1] [,2]
#> [1,] 0.6248218 0.5618640
#> [2,] 0.5618640 0.8092572
#>
samp.bw.var1 <- samp.bw$biwt.sig[1,1]
samp.bw.var2 <- samp.bw$biwt.sig[2,2]
samp.bw.cov <- samp.bw$biwt.sig[1,2]
samp.bw.cor <- samp.bw.cov / sqrt(samp.bw.var1 * samp.bw.var2)
samp.bw.cor
#> [1] 0.7901505
# or:
samp.bw.cor <- samp.bw$biwt.sig[1,2] / sqrt(samp.bw$biwt.sig[1,1]*samp.bw$biwt.sig[2,2])
samp.bw.cor
#> [1] 0.7901505
##############
# to speed up the calculations, use the median/mad for the initialization:
##############
samp.init <- list()
samp.init$cov <- diag(apply(samp.data, 1, stats::mad, na.rm=TRUE))
samp.init$center <- apply(samp.data, 1, median, na.rm=TRUE)
samp.init
#> $cov
#> [,1] [,2]
#> [1,] 1.033435 0.000000
#> [2,] 0.000000 1.395451
#>
#> $center
#> [1] 0.38901627 0.08568794
#>
samp.bw <- biwt.est(samp.data, med.init = samp.init)
samp.bw.cor <- samp.bw$biwt.sig[1,2] / sqrt(samp.bw$biwt.sig[1,1]*samp.bw$biwt.sig[2,2])
samp.bw.cor
#> [1] 0.7901505