The data this week comes from Our World in Data.
Hannah Ritchie and Max Roser (2021) - “Forests and Deforestation”. Published online at OurWorldInData.org. Retrieved from: ‘https://ourworldindata.org/forests-and-deforestation’ [Online Resource]
forest <- read_csv("forest.csv")
brazil_loss <- read_csv("brazil_loss.csv")
deforestation_by_source <- read_csv("deforestation_by_source.csv")
forest_area <- read_csv("forest_area.csv")
soybean_use <- read_csv("soybean_use.csv")
vegetable_oil <- read_csv("vegetable_oil.csv")
The plot below provides each dot representing 1000s of hectares (?) of loss, colored by how/why, displayed over time.
brazil <- brazil_loss %>%
pivot_longer(cols = commercial_crops:small_scale_clearing,
names_to = "why_loss",
values_to = "loss_raw") %>%
mutate(loss = round(loss_raw/10000)) %>%
mutate(year = as.factor(year))
brazil_long <- brazil %>%
uncount(weights = loss)
brazil_long %>%
count(year, why_loss) %>%
ggplot(aes(values = n, fill = why_loss)) +
waffle::geom_waffle(flip = TRUE, color = "white", n_rows = 4, size = 0.2) +
facet_wrap(~ year, nrow = 1, strip.position = "bottom") +
theme(
axis.ticks.x = element_blank(),
axis.text.x = element_blank(),
legend.key = element_blank(),
plot.title = element_text(size = 25),
legend.position = "top",
plot.caption = element_text(color = "black", size = 13)) +
labs(
fill = "",
title = "Changes over time and reasons for deforestation in Brazil",
caption = "Tidy Tuesday Plot: @hardin47 | Data: Deforestation") +
guides(fill = guide_legend(nrow = 2))
praise()
## [1] "You are perfect!"