african_names <- read_csv("african_names.csv")
blackpast <- read_csv("blackpast.csv")
census <- read_csv("census.csv")
slave_routes <- read_csv("slave_routes.csv")
For the major places of purchase, ports of origin, and ports of arrival, interest was in whether there had been substantial changes over time. Without more extensive knowledge of the places and ports, it is hard to connect what was happening at each. As such, the graphs show trends only for the places and ports associated with the most voyages. The most clear trend is that the rate of voyages increased quite dramatically from the seventeenth to nineteenth centuries.
slave_routes <- slave_routes %>%
mutate( purchase = case_when(
str_detect(place_of_purchase, "Sierra Leone") ~ "Sierra Leone",
str_detect(place_of_purchase, "Windward") ~ "Windward",
str_detect(place_of_purchase, "Benin") ~ "Benin",
str_detect(place_of_purchase, "Cameroon") ~ "Cameroon",
str_detect(place_of_purchase, "Congo") ~ "Congo",
str_detect(place_of_purchase, "Senegal") ~ "Senegal",
str_detect(place_of_purchase, "Gold Coast") ~ "Gold Coast",
str_detect(place_of_purchase, "Zanzibar") ~ "Zanzibar",
str_detect(place_of_purchase, "Senegambia") ~ "Senegambia",
str_detect(place_of_purchase, "Africa.,") ~ "Africa",
str_detect(place_of_purchase, "West Central Africa") ~ "West Central Africa",
TRUE ~ place_of_purchase
)) %>%
filter(!is.na(n_slaves_arrived))
slave_routes %>% head()
## # A tibble: 6 x 9
## voyage_id ship_name port_origin place_of_purcha… port_arrival
## <dbl> <chr> <chr> <chr> <chr>
## 1 81711 Hannah Liverpool Calabar St. Vincent…
## 2 81712 Hannah Liverpool New Calabar Grenada, po…
## 3 81713 Hannah Liverpool Bight of Biafra… Kingston
## 4 81714 Hannah Liverpool Bonny St. Vincent…
## 5 81715 Hannah Liverpool Congo River Grenada, po…
## 6 81716 Hannah Liverpool Ambriz Kingston
## # … with 4 more variables: year_arrival <dbl>, n_slaves_arrived <dbl>,
## # captains_name <chr>, purchase <chr>
slave_routes %>%
mutate(decade = 10*floor(year_arrival/10)) %>%
add_count(purchase) %>%
filter(n >= 500) %>%
group_by(purchase, decade) %>%
summarize(tot_slaves = sum(n_slaves_arrived, na.rm=TRUE)) %>%
ggplot() +
geom_smooth(aes(x = decade, y = tot_slaves, color = purchase), se=FALSE) +
geom_point(aes(x = decade, y = tot_slaves, color = purchase), size=0.5, alpha = 0.75) +
ggtitle("Number of slaves arrived over time, by place of purchase (>= 500 voyage from place)") +
theme(plot.title = element_text(size = 10, face = "bold"))
slave_routes %>%
mutate(decade = 10*floor(year_arrival/10)) %>%
add_count(port_origin) %>%
filter(n >= 500) %>%
group_by(port_origin, decade) %>%
summarize(tot_slaves = sum(n_slaves_arrived, na.rm=TRUE)) %>%
ggplot() +
geom_smooth(aes(x = decade, y = tot_slaves, color = port_origin), se=FALSE) +
geom_point(aes(x = decade, y = tot_slaves, color = port_origin), size=0.5, alpha = 0.75)+
ggtitle("Number of slaves arrived over time, by port of origin (>= 500 voyage from port)") +
theme(plot.title = element_text(size = 10, face = "bold"))
slave_routes %>%
mutate(decade = 10*floor(year_arrival/10)) %>%
add_count(port_arrival) %>%
filter(n >= 500) %>%
group_by(port_arrival, decade) %>%
summarize(tot_slaves = sum(n_slaves_arrived, na.rm=TRUE)) %>%
ggplot() +
geom_smooth(aes(x = decade, y = tot_slaves, color = port_arrival), se=FALSE) +
geom_point(aes(x = decade, y = tot_slaves, color = port_arrival), size=0.5, alpha = 0.75)+
ggtitle("Number of slaves arrived over time, by port of arrival (>= 500 voyage to port)") +
theme(plot.title = element_text(size = 10, face = "bold"))
Census trends over time for different regions of the country, broken down by race and status. As might be expected, in the Northeast, the number of slaves was decreasing precipitously in the second half of the nineteenth century, but in the South the number of slaves increased until the 13th amendment of the US Constitution was ratified in December of 1865.
census <- census %>%
pivot_longer(cols = c(total, white, black, black_free, black_slaves),
names_to = "race", values_to = "population")
census %>% head(100)
## # A tibble: 100 x 5
## region division year race population
## <chr> <chr> <dbl> <chr> <dbl>
## 1 USA Total <NA> 1870 total 38558371
## 2 USA Total <NA> 1870 white 33589377
## 3 USA Total <NA> 1870 black 4880009
## 4 USA Total <NA> 1870 black_free 4880009
## 5 USA Total <NA> 1870 black_slaves 0
## 6 USA Total <NA> 1860 total 31443321
## 7 USA Total <NA> 1860 white 26922537
## 8 USA Total <NA> 1860 black 4441830
## 9 USA Total <NA> 1860 black_free 488070
## 10 USA Total <NA> 1860 black_slaves 3953760
## # … with 90 more rows
census %>%
mutate(region = fct_relevel(region, c("Northeast", "Midwest", "South", "West", "USA Total"))) %>%
group_by(region, year, race) %>%
mutate(pop = sum(population)) %>%
ggplot() +
geom_line(aes(x=year, y = pop, color = race)) +
facet_wrap(~region) +
scale_y_continuous(trans = "log10") +
geom_vline(xintercept = 1865) +
ggtitle("Population over time, black vertical line at 1865")+
ylab("Population on log10 scale") +
labs(color = "race / status")