african_names <- read_csv("african_names.csv")
blackpast <- read_csv("blackpast.csv")
census <- read_csv("census.csv")
slave_routes <- read_csv("slave_routes.csv")

Mapping Slave Routes

For the major places of purchase, ports of origin, and ports of arrival, interest was in whether there had been substantial changes over time. Without more extensive knowledge of the places and ports, it is hard to connect what was happening at each. As such, the graphs show trends only for the places and ports associated with the most voyages. The most clear trend is that the rate of voyages increased quite dramatically from the seventeenth to nineteenth centuries.

slave_routes <- slave_routes %>%
  mutate(  purchase = case_when(
    str_detect(place_of_purchase, "Sierra Leone")  ~ "Sierra Leone",
    str_detect(place_of_purchase, "Windward")  ~ "Windward",
    str_detect(place_of_purchase, "Benin")  ~ "Benin",
    str_detect(place_of_purchase, "Cameroon")  ~ "Cameroon",
    str_detect(place_of_purchase, "Congo")  ~ "Congo",
    str_detect(place_of_purchase, "Senegal")  ~ "Senegal",
    str_detect(place_of_purchase, "Gold Coast")  ~ "Gold Coast",
    str_detect(place_of_purchase, "Zanzibar")  ~ "Zanzibar",
    str_detect(place_of_purchase, "Senegambia")  ~ "Senegambia",
    str_detect(place_of_purchase, "Africa.,")  ~ "Africa",
    str_detect(place_of_purchase, "West Central Africa")  ~ "West Central Africa",
    TRUE ~ place_of_purchase
  )) %>%
  filter(!is.na(n_slaves_arrived))


slave_routes %>% head()
## # A tibble: 6 x 9
##   voyage_id ship_name port_origin place_of_purcha… port_arrival
##       <dbl> <chr>     <chr>       <chr>            <chr>       
## 1     81711 Hannah    Liverpool   Calabar          St. Vincent…
## 2     81712 Hannah    Liverpool   New Calabar      Grenada, po…
## 3     81713 Hannah    Liverpool   Bight of Biafra… Kingston    
## 4     81714 Hannah    Liverpool   Bonny            St. Vincent…
## 5     81715 Hannah    Liverpool   Congo River      Grenada, po…
## 6     81716 Hannah    Liverpool   Ambriz           Kingston    
## # … with 4 more variables: year_arrival <dbl>, n_slaves_arrived <dbl>,
## #   captains_name <chr>, purchase <chr>
slave_routes %>%
  mutate(decade = 10*floor(year_arrival/10)) %>%
  add_count(purchase) %>%
  filter(n >= 500) %>%
  group_by(purchase, decade) %>%
  summarize(tot_slaves = sum(n_slaves_arrived, na.rm=TRUE)) %>%
  ggplot() +
  geom_smooth(aes(x = decade, y = tot_slaves, color = purchase), se=FALSE) +
  geom_point(aes(x = decade, y = tot_slaves, color = purchase), size=0.5, alpha = 0.75) +
  ggtitle("Number of slaves arrived over time, by place of purchase (>= 500 voyage from place)") +
  theme(plot.title = element_text(size = 10, face = "bold"))

slave_routes %>%
  mutate(decade = 10*floor(year_arrival/10)) %>%
  add_count(port_origin) %>%
  filter(n >= 500) %>%
  group_by(port_origin, decade) %>%
  summarize(tot_slaves = sum(n_slaves_arrived, na.rm=TRUE)) %>%
  ggplot() +
  geom_smooth(aes(x = decade, y = tot_slaves, color = port_origin), se=FALSE) +
  geom_point(aes(x = decade, y = tot_slaves, color = port_origin), size=0.5, alpha = 0.75)+
  ggtitle("Number of slaves arrived over time, by port of origin (>= 500 voyage from port)") +
  theme(plot.title = element_text(size = 10, face = "bold"))

slave_routes %>%
  mutate(decade = 10*floor(year_arrival/10)) %>%
  add_count(port_arrival) %>%
  filter(n >= 500) %>%
  group_by(port_arrival, decade) %>%
  summarize(tot_slaves = sum(n_slaves_arrived, na.rm=TRUE)) %>%
  ggplot() +
  geom_smooth(aes(x = decade, y = tot_slaves, color = port_arrival), se=FALSE) +
  geom_point(aes(x = decade, y = tot_slaves, color = port_arrival), size=0.5, alpha = 0.75)+
  ggtitle("Number of slaves arrived over time, by port of arrival (>= 500 voyage to port)") +
  theme(plot.title = element_text(size = 10, face = "bold"))