
Prof. Baumer MTH 292: Lecture Notes November 21st, 2013

Agenda

1. Second Exam: Stage II

2. Network Science

3. Centrality: Six Degrees of Kevin Bacon

Second Exam: Stage II Here is the link for the final testing data set:

http://dl.dropboxusercontent.com/s/jfahyqc3s4blq48/second_exam_test.csv

Social Networks Network Science is an emerging interdisciplinary field that studies the properties
of large and complex networks. Network scientists are interested in both theoretical properties of
networks (e.g. mathematical models for degree distribution) and data-based discoveries in real
networks.

The roots of network science are in the mathematical discipline of graph theory. There are a few
basic definitions that we’ll need before we can proceed.

• A graph G = (V,E) is simply a set of vertices (or nodes) V , and a set of edges (or links, or
even ties) E between those nodes. It may be more convenient to think about a graph as being
a network. For example, on Facebook, each user is a vertex, and each friend relation is an edge
connected two users. Thus, one can think of Facebook as a social network, but the underlying
mathematical structures is just a graph. Discrete mathematicians have been studying graphs
since Leonhard Euler posed the Seven Bridges of Königsberg problem in 1736.

• Edges in graphs can be directed or undirected. The difference is whether the relationship
is mutual or one-sided. For example, edges in the Facebook social network are undirected,
because friendship is a mutual relationship. Conversely, edges in Twitter are directed, since
you may follow someone who is not necessarily following you.

• Edges (or less commonly, vertices) may be weighted. The value of the weight represents some
quantitative measure. For example, an airline may envision its flight network as a graph, in
which each airport is a node, and edges are weighted according to the distance (in miles) from
one airport to another. [If edges are unweighted, this is equivalent to setting all weights to 1.]

• A path is a sequence of edges that connect two vertices. There may be many paths, or no
paths, between two vertices in a graph, but if there are any paths, then there is at least one
shortest path. The notion of a shortest path is dependent upon a distance measure in the graph
(usually, just the number of edges, or the sum of the edge weights). [Djikstra’s algorithm is
the most common way to find shortest paths, which are not necessarily unique.]

• The diameter of a graph is the length of the longest shortest path between any two pairs of
vertices. The eccentricity of a vertex v in a graph, is the greatest distance between that vertex
and any other vertex. Thus, in some sense a vertex with a low eccentricity is more central to
the graph.

• In general, graphs do not have coordinates. Thus, there is no right way to draw a graph.
Visualizing a graph is more art than science, but several graph layout algorithms are popular.

• Centrality: since graphs don’t have coordinates, there is no obvious measure of centrality. That
is, it is frequently of interest to determine which nodes are most “central” to the network. There
are many notions of centrality in a graph, but we will discuss three:

– Degree centrality: The degree of a vertex within a graph is the number of edges to which
it is adjacent. Thus, the number of degrees is a simple measure of centrality in which
more highly connected nodes rank higher.

http://dl.dropboxusercontent.com/s/jfahyqc3s4blq48/second_exam_test.csv
http://en.wikipedia.org/wiki/Network_science

Prof. Baumer MTH 292: Lecture Notes November 21st, 2013

– Betweenness centrality: If a vertex v is more central to a graph, then you would suspect
that more shortest paths between vertices would pass through v. This is the notion of
betweenness centrality. Specifically, let σ(s, t) be the number of shortest paths between
vertices s and t in a graph. Let σv(s, t) be the number of shortest paths between s and
t that pass through v. Then the betweenness centrality for v is the sum of the fractions
σv(s, t)/σ(s, t) over all possible pairs (s, t). This figure is often normalized by dividing by
the number of pairs of vertices (excepting v).

CB(v) =
2

(n− 1)(n− 2)

∑
s,t∈V \{v}

σv(s, t)

σ(s, t)

– Eigenvector centrality: This is the essence of Google’s PageRank algorithm, which we
will discuss next Tuesday.

Note that there are also notions of edge centrality that we have not discussed here.

• In a social network, it is usually believed that if person Alice and Bob are friends, and Alice
and Carol are friends, then it is more likely than it otherwise be that Bob and Carol are
friends. This the notion of triadic closure and it leads to measurements of clusters in real-
world networks.

Six Degrees of Separation: Kevin Bacon flavor The idea of Six Degrees of Separation was
conjectured by a Hungarian network theorist in 1929, and later popularized by a play (and movie
staring Will Smith). Stanley Milgram’s famous letter-mailing small-world experiment supposedly
lent credence to the idea that all people are connected by relatively “social hops.” That is, we are
all part of a social network with a relatively small diameter (perhaps as small as 6).

A popular incarnation of this idea is the Kevin Bacon game. [Compare to the notion of an Erdös
number in mathematics.] The idea is that every actor in Hollywood can be connected to Kevin
Bacon in at most six movie hops. We’ll explore this idea using the IMDB.

We’ll create a Hollywood network using actors and actresses in the IMDB. In this network, each
actor or actress is a node, and two actors share an edge if they have ever appeared in a movie
together. Then we’ll determine the centrality of Kevin Bacon.

First, we want to determine the edges, since we can then look up the node information based on
the edges that are present. One caveat is that these networks can grow very rapidly! Thus, we’ll be
modest by starting with only popular (at least 100,000 ratings) feature films (kind id = 1) from
2012, and we’ll only consider the top 20 credited roles in each film.

require(RMySQL)

con = dbConnect(MySQL(), user="mth292"

, host="rucker.smith.edu"

, password="RememberPi", dbname="imdb")

E = dbGetQuery(con, "SELECT a.person_id as src, b.person_id as dest, a.movie_id

, a.nr_order * b.nr_order as weight, t.title, idx.info as ratings

FROM imdb.cast_info a CROSS JOIN imdb.cast_info b USING (movie_id)

LEFT JOIN imdb.title t ON a.movie_id = t.id

LEFT JOIN imdb.movie_info_idx idx ON idx.movie_id = a.movie_id

WHERE t.production_year = 2012 AND t.kind_id = 1

AND info_type_id = 100 AND idx.info > 100000

AND a.nr_order <= 20 AND b.nr_order <= 20

AND a.role_id IN (1,2) AND b.role_id IN (1,2)

AND a.person_id < b.person_id

GROUP BY src, dest, movie_id")

head(E)

http://oracleofbacon.org/
http://www.ams.org/mathscinet/collaborationDistance.html

Prof. Baumer MTH 292: Lecture Notes November 21st, 2013

src dest movie_id weight title ratings

1 4106 271944 2608040 52 Zero Dark Thirty 128674

2 4106 298636 2608040 13 Zero Dark Thirty 128674

3 4106 463078 2608040 143 Zero Dark Thirty 128674

4 4106 485497 2608040 234 Zero Dark Thirty 128674

5 4106 559037 2608040 260 Zero Dark Thirty 128674

6 4106 564481 2608040 208 Zero Dark Thirty 128674

This gives us

nrow(E)

[1] 8427

connections between only 45 films:

head(unique(E$title))

[1] "Zero Dark Thirty" "The Dark Knight Rises" "Argo"

[4] "Taken 2" "The Expendables 2" "The Dictator"

There are two popular R packages for network analysis: igraph and sna. We’ll use igraph. To
build a graph, we just have to specify the edges, and whether we want them to be directed.

require(igraph)

g = graph.data.frame(E, directed = FALSE)

summary(g)

IGRAPH UNW- 831 8427 --

attr: name (v/c), movie_id (e/n), weight (e/n), title (e/c),

ratings (e/c)

Note that we have associated metadata with each edge. Namely, information about the movie
that gave rise to the edge, and a weight metric (that I made up) based on the order in the credits
where each actor appeared. [The idea is that top-billed stars are more likely to appear on screen
longer, and thus have more meaningful interactions with more of the cast.]

Now let’s get information about the vertices in this graph. We could have done with another
JOIN in the original query, but this is more efficient. [Why?]

By default, igraph has assigned the name attribute to each vertex to be the IMDB ID for that
actor that we pulled from the database. So we’ll get that list (in order!) and ask the database for
more information about those people.

vIds = paste(V(g)$name, collapse = ",")

V = dbGetQuery(con, paste("SELECT id as imdbId, name FROM imdb.name WHERE id IN (",

vIds, ")"))

head(V)

imdbId name

1 4106 Abkarian, Simon

2 4421 Aboutboul, Alon

3 5482 Abtahi, Omid

4 10875 Adig\xfczel, Naci

5 11119 Adkins, Scott

6 12302 Affleck, Ben

Prof. Baumer MTH 292: Lecture Notes November 21st, 2013

Now we’ll update the graph with this new information.

Vg = get.data.frame(g, what = "vertices")

Vg$vId = 1:nrow(Vg)

V = merge(x = V, y = Vg, by.x = "imdbId", by.y = "name")

V(g)[V$vId]$imdbId <- V$imdbId

V(g)[V$vId]$Name <- V$name

Let’s visualize this network. There are many graphical parameters that you may wish to set,
and the default choices are not always good. In this case we have over 800 vertices, so we’ll make
them small, and omit labels.

plot(g, edge.color = "lightgray", vertex.size = 2, vertex.label = NA)

It’s easy to see the clusters based on movies, but you can also see a few actors who have appeared
in multiple movies, and how they tend to be more “central” to the network. If an actor has appeared
in multiple movies, then it stands to reason that he will have more connections to other actors. This
is captured by degree centrality.

V(g)$degree = degree(g)

head(get.data.frame(g, what = "vertices")[order(V(g)$degree, decreasing = TRUE),

])

name imdbId Name degree

336923 336923 336923 Cranston, Bryan 57

599720 599720 599720 Gordon-Levitt, Joseph 57

681641 681641 681641 Hemsworth, Chris 57

1153136 1153136 1153136 Neeson, Liam 57

1555114 1555114 1555114 Stuhlbarg, Michael 57

1740353 1740353 1740353 Willis, Bruce 57

Unfortunately, the distribution of degrees is not terribly smooth. [Why?]

require(mosaic)

densityplot(~degree(g))

degree(g)

D
en

si
ty

0.00

0.05

0.10

0.15

0.20

0.25

10 20 30 40 50 60

Why does Bryan Cranston have so many connections? The following quick function will retrieve
the list of movies for a particular actor.

getMovies = function(imdbId, E) {
tally(~title, data = subset(E, src == imdbId | dest == imdbId))

}
getMovies(336923, E)

##

Argo John Carter Total Recall Total

19 19 19 57

Prof. Baumer MTH 292: Lecture Notes November 21st, 2013

He was in three of these movies! Let’s color the nodes based on their normalized degree centrality.
We’ll use a color palette from the ColorBrewer.

V(g)$deg = degree(g)/max(degree(g))

require(RColorBrewer)

palette = brewer.pal(5, "BuPu")

getColor = function(vals, palette) {
colorRamp returns a function that maps values in [0,1] to colors

ramp = colorRamp(palette)

color.mat = t(sapply(vals, FUN = ramp))

return(rgb(color.mat, maxColorValue = 255))

}
V(g)$color = getColor(V(g)$deg, palette)

We don’t want to show labels for everyone. We only want to show them for the highly central
actors.

V(g)$label = ifelse(V(g)$deg > 0.9, V(g)$Name, NA)

E(g)£label = ifelse(E(g)£weight == 0.5, E(g)£title, NA)

Let’s also draw the more heavily-weighted edges thicker.

E(g)$width = 2 * E(g)$weight/max(E(g)$weight)

plot(g, edge.width = E(g)$width, edge.color = "lightgray", vertex.color = V(g)$color,

vertex.label = V(g)$label, vertex.size = 2)

Degree centrality does not take into account the weights on the edges. If we want to emphasize
the pathways through leading actors and actresses, we could consider betweenness centrality.

V(g)$btw = betweenness(g, normalized = TRUE)

head(get.data.frame(g, what = "vertices")[order(V(g)$btw, decreasing = TRUE),

])

name imdbId Name degree deg color

599720 599720 599720 Gordon-Levitt, Joseph 57 1.0000 #810F7C

2646845 2646845 2646845 Stewart, Kristen 38 0.6667 #896BB1

89248 89248 89248 Bale, Christian 19 0.3333 #A6BAD9

1740353 1740353 1740353 Willis, Bruce 57 1.0000 #810F7C

374263 374263 374263 Day-Lewis, Daniel 19 0.3333 #A6BAD9

886717 886717 886717 LaBeouf, Shia 19 0.3333 #A6BAD9

label btw

599720 Gordon-Levitt, Joseph 0.2206

2646845 <NA> 0.1771

89248 <NA> 0.1751

1740353 Willis, Bruce 0.1683

374263 <NA> 0.1630

886717 <NA> 0.1543

getMovies(599720, E)

##

Lincoln Looper The Dark Knight Rises

19 19 19

Total

57

How does this plot differ from the previous one?

http://colorbrewer2.org/

Prof. Baumer MTH 292: Lecture Notes November 21st, 2013

V(g)$color = getColor(V(g)$btw/max(V(g)$btw), palette)

V(g)$label = iconv(ifelse(V(g)$btw > 0.1, V(g)$Name, NA), "latin1", "UTF-8")

plot(g, edge.width = E(g)$width, edge.color = "lightgray", vertex.color = V(g)$color,

vertex.label = V(g)$label, vertex.size = 2)

If Joseph Gordon-Levitt (imdbId 599720) is very central to this network, then perhaps instead
of a Bacon number, we could consider a JGL number. Christian Bale’s JGL number is obviously 1,
since they appeared in The Dark Knight Rises together:

jgl = V(g)[Name == "Gordon-Levitt, Joseph"]

get.shortest.paths(g, from = jgl, to = V(g)[Name == "Bale, Christian"], weights = NA)

[[1]]

[1] 198 22

On the other hand, his distance from Kristen Stewart is:

p = get.shortest.paths(g, from = jgl, to = V(g)[Name == "Stewart, Kristen"],

weights = NA)[[1]]

length(p)

[1] 5

V(g)[p]$Name

[1] "Gordon-Levitt, Joseph" "Hardy, Tom" "Pearce, Guy"

[4] "Theron, Charlize" "Stewart, Kristen"

E(g, path = p)$title

[1] "The Dark Knight Rises" "Lawless"

[3] "Prometheus" "Snow White and the Huntsman"

Note that while the diameter of the graph is:

diameter(g, weights = NA)

[1] 9

the eccentricity of JGL is:

eccentricity(g, vids = jgl)

599720

5

Thus, there is no actor in the network whose JGL number is greater than 5.
What will happen if you expand this network by going back further in time?

Further For more sophisticated graph visualization software, see Gephi.

https://gephi.org/

